
FR
O

M
 T

H
E 

A
R
CH

IV
ES

Find Similar Titles More Information

Visit the National Academies Press online and register for...

Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National 
Academies Press.  Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy 
of Sciences. 

To request permission to reprint or otherwise distribute portions of this
publication contact our Customer Service Department at  800-624-6242.

Copyright © National Academy of Sciences. All rights reserved.

Instant access to free PDF downloads of titles from the

10% off print titles

Custom notification of new releases in your field of interest

Special offers and discounts

NATIONAL ACADEMY OF SCIENCES

NATIONAL ACADEMY OF ENGINEERING

INSTITUTE OF MEDICINE

NATIONAL RESEARCH COUNCIL

This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=19315

Pages
124

Size
8.5 x 10

ISBN
0309323126

Methods for Improving Software Quality and Life 
Cycle Cost (1985) 

Committee on Methods for Improving Software Quality 
and Life Cycle Cost; Air Force Studies Board; 
Commission on Engineering and Technical Systems; 
National Research Council 

http://www.nap.edu/catalog.php?record_id=19315
http://www.nap.edu/related.php?record_id=19315
http://www.nap.edu/catalog.php?record_id=19315
http://www.nas.edu/
http://www.nae.edu/
http://www.iom.edu/
http://www.iom.edu/


Methods for Improving 
Software Quality and 
Life Cycle Cost 

Committee on Methods for Improving Software Quality 
and Life Cycle Cost 

Air Force Studies Board 
Commission on Engineering and Technical Systems 
National Research Council 

n T7 S D I rJ..i t 1l U J J !l2/ 1 ,• 

NATIONAL ACADEMY PRESS 
Washington, D.C. 1985 

t . ~ ~ ~ ~ . 
I.. -.A · 

,- ·, ' . 
Jv1~ 1. ... . . . . 

NAS-NAE 

MtlY 5 1qR~ 

liBRARY 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


? ') . [JO'-f~ 
..:. I I 

NOTICE 

The project that is the subject of this report was approved by the 
Governing Board of the National Research Council, whose members are 
drawn from the councils of the National Academy of Sciences, the 
National Academy of Engineering, and the Institute of Medicine. The 
members of the committee responsible for the report were chosen for 
their special competence& and with regard for appropriate balance. 

This report has been reviewed by a group other than the authors 
according to procedures approved by a Report Review Committee consis­
ting of members of the National Academy of Sciences, the National 
Academy of Engineering, and the Institute of Medicine. 

The National Research Council was established by the National 
Academy of Sciences in 1916 to associate the broad community of 
science and technology with the Academy's purposes of furthering 
knowledge and of advising the federal government. The Council oper­
ates under the authority of its congressional charter of 1863, which 
establishes the Academy as· a private, nonprofit, self-governing mem­
bership corporation. The Council has become the principal operating 
agency of both the National Academy of Sciences and the National 
Academy of Engineering in the conduct of their services to the govern­
ment, the public, and the scientific and engineering communities. It 
is administered jointly by both of the Academies and the Institute of 
Medicine. The National Academy of Engineering and the Institute of 
Medicine were established in 1964 and 1970, respectively, under the 
charter of the National Academy of Sciences. 

This report represents work under Contract 
No. F49620-83-C-Olll between the United 
States Air Force and the National Academy 
of Sciences. 

Copies of this publication are available from: 

Air Force Studies Board 
National Research Council 
2101 Constitution Avenue, N.W. 
Washington, D.c. 20418 

ii 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Air Force Studies Board 

Julian Davidson, Chairman, Booz-Allen & Hamilton, Inc. 
John L. Allen, John L. Allen Associates 
William P. Delaney, MIT Lincoln Laboratory 
Lee c. Eagleton, Pennsylvania State University 
C. Cordell Green, Kestrel Institute 
Grant L. Hansen, System Development Corporation 
Lorenz A. Kull, Science Applications International Corporation 
Brockway McMillan, Chairman Emeritus, Bell Telephone Laboratories, 

Inc. (Retired) 
Stanley R. Mohler, Wright State University School of Medicine 
Brian O'Brien, Chairman Emeritus, Private Consultant 
Jennie R. Patrick, Philip Morris USA 
Charles v. Shank, AT&T Bell Laboratories 
Charles R. Vick, Auburn University 
Oswald G. Villard, Jr., Member Emeritus, Stanford University 
Robert A. White, University of Illinois-Urbana 
Laurence R. Young, Massachusetts Institute of Technology 

Committee on Methods for Improving Software Quality 
and Life Cycle Cost 

Charles R. Vick, Chairman, Auburn University 
Barry Boehm, TRW, DSSG 
Julian Davidson, Ex-officio Member, Booz-Allen & Hamilton, Inc. 
Clarence Giese, AIRMICS, Georgia Institute of Technology 
Edward L. Lafferty, The MITRE Corporation 
John J. Martin, Bendix Corporation 
Brockway McMillan, Bell Telephone Laboratories, Inc. (Retired) 
Edward Miller, Software Research Associates 
Stanley R. Mohler, Wright State University School of Medicine 
c. v. Ramamoorthy, University of California-Berkeley 
Joseph Urban, Uni~ersity of Southwestern Louisiana 
Willis H. Ware, Rand Corporation 
Raymond Yeh, University of Maryland 

Air Force Studies Board Staff 

Kenneth s. McAlpine, Executive Secretary 
Vernon H. Miles, Executive Secretary 
Lynn E. Klinger, Administrative Assistant 

iii 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Participants in the 1983 Summer Study on Methods for Improving 
Software Quality and Life Cycle Cost 

Charles R. Vick, Study Director, Auburn University 
Mack Alford, TRW 
Gordon Bate, Auburn University 
Barry Boehm, TRW, DSSG 
David Burlingame, University of Southwestern Louisiana 
Judith A. Clapp, The MITRE Corporation 
Balakrishnan Dasarathy, GTE Laboratories, Inc. 
Julian Davidson, Ex-officio Member, Booz-Allen & Hamilton, Inc. 
Dennis D. Doe, Boeing Aerospace Company 
Walter J. Ellis, IBM Corporation 
Carl Engelman, The MITRE Corporation 
Clarence Giese, AIRMICS, Georgia Institute of Technology 
John Gioia, Robbins-Gioia, Inc. 
Jack Goldberg, SRI International 
Cordell Green, Kestrel Institute 
Edward L. Lafferty, The MITRE Corporation 
Robert Larson, Private Consultant 
John J. Martin, Bendix Corporation 
Brockway McMillan, Bell Telephone Laboratories (Retired) 
Edward Miller, Software Research Associates 
Stanley R. Mohler, Wright State University School of Medicine 
Larry Moore, McDonnell Douglas Astronautics Company 
Carl Murphy, Science Applications, Inc. 
Motasim Najeeb, University of Southwestern Louisiana 
F. Robert Naka, GTE Sylvania 
Pat Nanartowich, University of Southwestern Louisiana 
C. v. Ramamoorthy, University of California - Berkeley 
Paul B. Schneck, National Aeronautics and Space Administration 
Wei-Tek Tsai, University of California at Berkeley 
Joseph Urban, University of Southwestern Louisiana 
Woodie Vandever, Higher Order Software, Inc. 
Willis H. Ware, Rand Corporation 
Raymond Yeh, University of Maryland 

AIR FORCE LIAISON REPRESENTATIVES 

Samuel Dinitto, RADC/COE, Griffiss Air Force Base, NY 
Maj William R. Price, AFOSR/NM, Bolling Air Force Base, D.C. 
Col James Riley, HQ, AFSC/DL, Andrews Air Force Base, D.C. 
Maj Edward Stevens, HQ, AFSC/ALR, Andrews Air Force Base, D.C. 

iv 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


METHODS FOR IMPROVING SOFTWARE QUALITY AND LIFE CYCLE COST 
1983 SUMMER STUDY 

Steering Committee 
c. Vick, Chairman 

B. Boehm 
J. Davidson 
c. Giese 
B. McMillan 
J. Martin 
E. Miller 

S. Mohler 
C. V. Ramamoorthy 
J. Urban 
W. Ware 
R. Yeh 

SUBCOMMITTEES 

TECHNIQUES TOOLS MANAGEMENT 

J. Urban, Chairman E. Miller, Chairman E. Lafferty, 

B. Boehm M. Alford J. Clapp 
D. Burlingame D. Doe c. Enge-lman 
B. Dasarathy w. Ellis c. Giese 
J. Goldberg R. Larson J. Gioia 
c. Green s. Mohler J. Martin 
M. Najeeb c. V. Ramamoorthy L. Moore 
P. Nanartowich w. Tsai c. Murphy 
w. Vandever F. R. Naka 
R. Yeh P. Schneck 

E. Stevens 
w. Ware 

v 

Chairman 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


STATEMENT OF TASK 

In spite of numerous past research and development endeavors 
related to software engineering tools and methodologies, the Air Force 
continues to experience problems in obtaining required performance, 
quality, and productivity while controlling cost and schedules of 
large software based systems. The solution to this problem does not 
reside in continued proliferation of fragmented software engineering 
elements but rather in the development of an integrated and 
comprehensive standardized software engineering environment that will 
support the software life cycle from user requirements through 
operations and maintenance. 

Many of the tools and techniques required to construct such an 
environment now exist in a suitable form. Others will have to be 
modified or updated and still others must be developed. A 
comprehensive and consistent integrated support system is necessary to 
improve performance, quality, cost, and schedule to control O&M costs 
for error correction and product improvement. 

A software engineering environment consisting of automated tools 
for design, development, test and validation; specification, design 
and implementation languages; predictive models for cost, schedule and 
reliability estimation; standards for documentation and quality 
control; and management tools and procedures derived from the software 
engineering structure as opposed to a force fit should have a dramatic 
positive impact on the "continuing software crises." 

The Air Force Studies Board proposes to undertake a study that 
will update, in part, the AFSB 1976 Summer Study on operational 
software management and development. The study will characterize a 
comprehensive and integrated standardized software engineering 
environment. Identification of tools, techniques, standards, models, 
and metrics will be accomplished for each and every phase of the total 
software life cycle. An assessment of the state of the art of all 
elements of the environment will identify research and development 
requirements for the Air Force. The result of the study will be (1) 
the identification of a near-term software engineering environment 
consisting of off-the-shelf tools and techniques, which may be 
implemented as is or with minor modification and (2) a time-phased R&D 
plan for major modification, development, and integration of all 
identified elements leading to a longer-term comprehensive environment. 

vi 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Ada 

AF 

AFSC/IG 

AI 

CAI 

CDR 

CON CAP 

CPDP 

CRISP 

DSMC 

DSS 

ECP 

ECR 

ESD 

FSED 

GFE 

HIPO 

HOL 

IOC 

IUS 

IV&V 

KBS 

KBSA 

LISP 

NORAD 

OBJ 

O&M 

PDR 

PM 

PMC 

PHD 

GLOSSARY 

The Department of Defense common language 

Air Force 

Air Force Systems Command/Inspector General 

Artificial Intelligence 

Computer Aided Instruction 

Critical Design Review 

Concept Evaluation Capability 

Computer Program Development Plan 

Computer Resources Integration Support Plan 

Defense Systems Management College 

Decision Support Systems 

Engineering Change Proposal 

Embedded Computer Resources 

Electronic Systems Division 

Full Scale Engineering De.velopment 

Government Furnished Equipment 

Hierarchical Input Processing Output 

Higher Order Language 

Initial Operating Capability 

Inertial Upper Stage 

Independent Verification and Validation 

Knowledge Baaed System 

Knowledge Baaed System Assistant 

Artificial Intelligence Programming Language 

North American Air Defense Command 

Programming Language (as in LISP above) 

Operation and Maintenance 

Preliminary Design Reviews 

Program Manager 

Program Management Center 

Program Management Directive 

vii 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


PMDSS 

PKRT 

plx 

PSL/PSA 

RFP 

RRDC 

RSL 

SAMC 

SEE 

SPADOC 

SPO 

USAF 

VLSI 

WIS 

WWMCCS 

Project Management Decision Support System 

Program Management Responsibility Transfer 

Pre-planned Product Improvement 

Problem Statement Language/Problem Statement Analyser 

Request for Proposal 

Rapid Requirements Definition Capability 

Requirements Statement Language 

Software Acquisition Management Center 

Software Engineering Environment 

Space Defense Operation Center 

Special Project Office 

United States Air Force 

Very large-scale integration 

WWMCCS Information System 

World Wide Military Command Control System. A network 

of dozens of HIS 6000 computers providing command and 

control of the U.S. defense forces. 

viii 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


1.0 INTRODUCTION 

The amount of computer software in "mission critical" military 
systems and its importance in achieving the desired functionality of 
those systems have increased dramatically in the past two decades. 
Further, while projections for such increases in the next decade and 
beyond vary widely, all forecast even more impact for software on 
future military systems. The current and planned systems for the 
U.S. Air Force are among the most, if not the most, complex and 
sophisticated in the world, and to a large degree the requirements on 
the systems have to be satisfied by the software "embedded" within 
them. For example, in some c3I applications, the software amounts 
to 80 percent of the total development effort, and new fighter 
aircraft are "flying" software measured in terms of hundreds of 
thousands of lines of code. 

While hopes for the system capabilities to be realized through 
software have been high, very often the delivered product has grossly 
missed the mark in functionality. To make matters worse, more often 
than not, the software portion of the system is responsible for sys­
tem delays and enormous cost growth. On occasion, these delays have 
been measured in years and the cost growth in multiples of the origi­
nal software budget. Unfortunately, recent history has not shown a 
significant improvement in this situation. 

Within the last 10 years, as more and more software-intensive 
systems have been fielded, the Department of Defense (DoD) has come 
to realize that software development costs are often dwarfed by sup­
port and modification (often called "maintenance") costs associated 
with fielded software. Depending on the useful life and the number 
of modifications to be made to the software, these costs can average 
three to five times the original development budget. For example, 
data exist to show that a change in the functionality made after 
rather than before a system is fielded can cost one or two orders of 
magnitude more. Thus, the DoD must be just as concerned, if not more 
so, with software life cycle costs as it is with those of the hard­
ware life cycle. 

The situation as described thus far motivated the Commander, 
Headquarters, u.s. Air Force Systems Command, to commission the Air 
Force Studies Board to conduct a summer study on methods for improv­
ing software quality and life cycle cost. This study was held from 
11-29 July 1983 at the National Academy of Sciences' Woods Hole Study 
Center at Woods Hole, Massachusetts. 

Since the late 1960s, expert opinion, university, industry, and 
military studies have placed a good measure of the blame for the poor 
state of software on the lack of engineering discipline applied to 
the development and support of software, and on the lack of suitable 
"environments" for enforcing and supporting a software engineering 

1 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


discipline. Such an environment should embody a single or pouibly a 
set of software engineering disciplines and provide tools and tech­
niques that improve the productivity of development and management 
teams alike in following a particular discipline. By providing such 
environments, experts and numerous studies agree that software devel­
opment and support can be brought under control and become less 
expensive. 

There is no exact definition for a "software engineering environ­
ment. 11 For purposes of this report, the scope of such an "environ­
ment" will include: 

1. Automated tools for specification, design, development, test 
and validation, operation, and maintenance; 

2. Specification, design, and implementation languages; 
3. Predictive models for cost, schedule, and reliability; 
4. Standards for documentation and quality control; and 
5. Management tools and procedures directed to/from the soft­

ware engineering environment structure. 

1.1 Steering Committee Meetings 

Several meetings of the steering committee were held from January 
through June 1983 to: 

1. Define and scope the task statement; 
2. Gather and review background information on the state­

of-the-art, promising but untried · technology The. U.S. Air 
Force, Army, and Navy plans and programs to improve their 
state-of-the-practice, and the Office of Secretary of Defense 
(OSD) plans for the $300 million program "Software Technology 
for Adaptable Reliable Systems (STARS)"; 

3. Determine the organization of the summer· study; and 
4. Determine the final membership of the actual study group. 

It was decided that the study group would address three basic 
areas with regard to the goals of software life-cycle cost reduction 
and software quality improvement: 

1. The identification of technology and management recoiiiDenda­
tions to be pursued; 

2. The identification of a software engineering environment that 
could be fielded in the near term. The environment would 
consist of off-the-shelf tools and techniques that may be 
implemented as is or with minor modification; and 

3. The identification of time-phased recoiiiDendations for major 
modification, development, and integration of tools and 
techniques leading to a longer-term, more comprehensive 
software engineering environment. 

2 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The committee waa briefed on numerous topics, including: 

1. The results of a survey on perceived needs in embedded soft­
ware and technology solutions by Mr. Joseph Batz, OUSDR&E 
(R&AT). 

2. A state-of-the-art survey of the software industry in the 
u.s. and Japan by Dr. Raymond Yeh, University of Maryland. 

3. A strategy for a knowledged-based software assistant by 
Dr. C. Cordell Green, Kestrel Institute. 

4. Several briefings on the background and status of the OSD 
STARS program, by Mr. Samuel DiNitto, Rome Air Development 
Center. 

5. A survey of problem indicators gathered from actual U.S. Air 
Force Systems Acquisitions by Col. Edward T. Akerlund, HQ, 
Air Force Systems Command. 

6. Actual experience with state-of-the-art software engineering 
techniques and tools on the U.S. Air Force's Data Systems 
Modernization Program by Mr. Anthony Jordano, IBM. 

1. The development, specifics, and use of a common, modern, 
corporate software engineering environment by Dr. Samuel 
Steppel and Mr. Peter Belford, CSC. 

· 8. An integrated software support system in use at the u.s. Air 
Force Wright Aeronautical Laboratories (AFWAL) by Maj. Israel 
Caro, AFWAL. 

9. The U.S. Army's plans for Post Deployment Software Support 
(PDSS) Centers, including Ada* and the MIL-STD 1862 computer 
architecture, by Mr. James Hess, USA/DARCOM. 

10. The U.s. Navy's experience with the support of the CMS-2 
programming language and their plans for promulgating and 
supporting Ada by Mr. Owen McOmber, NAVMAT 08Y. 

11. The state-of-the-practice in software engineering at an air 
logistics center by Mr. Alton Patterson, Sacramento Air 
Logistics Center. 

12. The state-of-the-practice within the U.S. Air Force Systems 
Command's Product Divisions by those Product Divisions Com­
puter Resource focal points. 

13. Recommendations on future directions that the u.s. Air Force 
should take with regard to software by Dr. Edwin Stear, 
former Chief Scientist of the u.s. Air Force. 

*Ada -- The Department of Defense common language. During the 1983 
Summer Study several of the briefers discussed Ada. This is a modern 
high-order computer programming language which will become the 
standard language for writing software for DoD embedded computer 
applications. 

3 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


1.2 Study Organization and Membership 

It was decided that the study would be organized as three compo­
nents concerned with (1) the management of software development and 
support, (2) techniques to be employed to improve the productivity, 
quality, and management visibility with regard to software, and (3) 
tools that would automate those techniques to help institutionalize 
them and further enhance productivity, quality, and visibility. The 
responsibility for addressing these components was given to three 
subcommittees with the same names, i.e., the Management, Techniques, 
and Tools subcommittees. 

The subcommittees would be charged to study their respective 
components with a view toward implementing'any recommendations within 
a software environment(&) that would be realizable and properly 
engineered within three time frames. Each subcommittees was to focus 
on a near-term environment which could be fielded in two to four 
years; a mid-term environment to be'fielded in four to six years; and 
a far-term environment geared to future as well as present needs, to 
be fielded and continually enhanced within six to fifteen years. In 
addition, the subcommittees& were asked to update the Air Force 
Studies Board's 1976 Summer Study on Operational Software Management 
and Developmentl. 

The final membership of the 1983 Summer Study on Methods for 
Improving Software Quality and Life Cycle Cost is depicted on page 
111. In rounding out their respective subcommittees (page v), the 
subcommittee chairmen attempted to achieve a proper balance with 
respect to academia, the software and defense systems industry, and 
the government. The Techniques Subcommittee membership was heavy in 
academic personnel and software industry personnel concerned with 
advancing the state-of-the-art. The Tools Subcommittee generally was 
composed of individuals with a history of developing and/or using 
software tools. Finally, the Management Subcommittee was heavily 
populated with senior managers with extensive experience in the 
acquisition and development of large, software-intensive military or 
military-related systems. 

In addition to the "permanent" subc0111Di t tee members, each group 
was augmented with "part-time" individuals. who served for a few hours 
up to a full week. These people provided formal and informal presen­
tations on the state-of-the-practice, state-of-the art, and propos­
als for future systems. Often, they served as sounding boards for 
ideas and as representatives of the u.s. Air Force and the military 
industrial community. In all those roles, they were invaluable and 
indispensable. These individuals and their affiliations are on page 
iv. 

4 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


2. 0 SUMMARY OF RECOMMENDATIONS 

Detailed recommendations are presented in succeeding sections. 
However, the major recommendations and some of the supporting ration­
ale are provided at this point to serve as an executive summary. 

It is the contention of the study group that gains in software 
productivity and quality, achievable with off-the-shelf tools and 
techniques, are not ensured. In other words, in many, if not most 
cases, the u.s. Air Force is not benefiting to the maximum extent 
possible from existing technology. The reasons for this situation 
are unawareness of the technology on the part of the U.S. Air Force 
and its contractors, poor engineering (usually "human" engineering) 
of the tools, and a lack of the kind of vendor support needed to use 
the tools in serious engineering of systems software. To correct the 
situation, the study group recommended that these actions be 
undertaken: 

1. The U.S. Air Force "engineer" several first generation 
environments that utilize compatible, proven techniques and 
tools. 

2. Training, distribution, and maintenance schemes be devised 
for the environments. 

3. Generic, functional specifications for the environments be 
developed to serve as a "minimum" standard, and enforced as 
such in all software acquisitions. 

To move beyond what the current state-of-the-art will provide in 
terms of productivity and quality, the group recoDUDended that the 
U.S. Air Force create a second generation of software engineering 
environments. The second generation should be designed from the top 
down, with the complete integration of the methodology, tools, and 
techniques as a primary objective, rather than a forced fit as in 
the first generation environment(s). The environment must be compre­
hensive in that it must support the entire life cycle model. The 
first generation environmends) could be hampered by a scarcity of 
proven tools in all phases except the code and unit test. This lack 
of a comprehensive and integrated set of tools will likely hinder 
communication and management oversight across life cycle phases. 

To achieve the desired completeness in the tool set and support 
the integration of the tools across the entire lifecycle, the follow­
ing must be undertaken: 

1. An intense concentration on the software requirements and 
specification phases through better languages and analysis 
and validation tools. 

2. Increased R&D in computer-aided test case design and analy­
sis. 

5 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


3. The use of intelligent data base aanagement systems (DBMS) 
within the environment to help manage and integrate the huge 
amount of software engineering data that will be generated by 
the new tools. 

4. Employment of a concept known as the "distributed software 
engineering work station" to allow acquisition and project 
managers, systems analysts, and software engineers to co.mu­
nicate and carry out their own tasks from a co.mon baseline. 

The study group generally agreed that the ever increasing com­
plexity (in terms of demands on performance, reliability, flexibil­
ity, and deployment schemes) will eventually render even the second 
generation environments inadequate to manage, develop, and support 
the software needed to handle future complexity. At least an order 
of magnitude improvement over current productivity and quality will 
be required of a third generation environment. Significant advances 
and in some cases breakthroughs in the technology base will be neces­
sary to cover such ground. 

The application of artificial intelligence techniques, specifi­
cally knowledge-based expert systems, to increase the automation of 
the specification, design, implementation, and testing and validation 
processes is seen as a strong contender to achieve at least an order 
of magnitude improvement. The study group advocates the pursuit of a 
knowledge-based software assistant (KBSA) by the u.s. Air Force. 

The study group also explored alternate development life cycle 
models to help deal with the forecast complexity. One alternative 
proposed is evolutionary system development with working, useful 
incremental system deliveries. This is in contrast to the "every­
thing at once" philosophy that pervades the current systems acquisi­
tion process. Such an alternative requires more "up-front" work by 
the customer, acquisition element, and systems contractor, but its 
aim is to break the whole into simpler deliveries. This would give 
the U.S. Air Force a better understanding of the contractor's prog­
ress, the u.s. Air Force and contractor both a better understanding 
of the ultimate system, and serve to improve the chances of some 
operational capability being delivered to the government even if pro­
gram difficulties are encountered. Prototyping and rapid prototyping 
are technologies worthy of investigation in support of this concept. 

The management of software in the acquisition, development, and 
operations and maintenance (O&M) aspects of a system leaves much to 
be desired. This stems primarily from a lack of knowledgeable people 
as well as technical and policy support for software systems manage­
ment. To overcome these problems, the group recommended the follow­
ing: 

6 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


1. Center(s) of expertise in software acquisition and management 
should be created. The number of such centers was left un­
specified, but two possibilities are (a) for the u.s. Air 
Force Systems Command (AFSC), or (b) per product division 
and/or logistics center. 

2. The u.s. Air Force should develop, prepare for and use alter­
nate acquisition strategies. Prototyping is a strategy to 
establish system requirements that has proven its worth in 
industry, and it should be the rule for acquiring systems 
rather than the exception. 

3. The U.S. Air Force must provide for the immediate development 
and follow-up support for software management tools to assist 
in costing and scheduling, user/System Project-office/con­
tractor communication, and quality prediction and assessment. 

4. Better training and incentives must be provided for both 
management and software personnel. One bad example of the 
present situation, which the group was assured was already 
under correction, was the omission of bonuses for extending 
service time in computer-related U.S. Air Force military 
occupations while those in other engineering fields were 
rewarded for extending their service time. 

5. There should be stronger and better selection procedures for 
software managers within the U.S. Air Force, as well as the 
military-industrial community. The U.S. Air Force may spend 
hundreds of thousands of dollars training and screening a 
pilot or a specialized mechanic, but may select software 
acquisition managers for multimillion-dollar systems with no 
related software experience. 

With regard to system architectures employed or planned to be 
employed in U.S. Air Force mission critical systems, the group came 
to the conclusions that: 

1. Present computer architectures, including the MIL-STD 1750-A, 
are marginal or inadequate for many applications, especially 
future ones in c3t and even avionics; and 

2. Due to a lack of tools and techniques to support software 
engineering for nontraditional architectures such as distrib­
uted systems, multilevel secure systems, direct-execution 
machines, highly parallel architecture, and artificial intel­
ligence oriented architectures, the U.S. Air Force will not 
be able to incorporate the full advantages of the enhanced 
performance of these architectures into its systems. 

For the near term, the group recommends that the U.S. Air Force 
enhance its evaluation of the NEBULA (MIL-STD 1862) instruction set 
architecture. Compared with the MIL-STD 1750A, the MIL-STD 1862 com­
puter has a larger word size (32 bits), a larger address space (232 
vs. 216 addressable bytes), and is much more supportive of Ada. 

7 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The coat of the development and support for this architecture is 
being borne by the u.s. Army, so this is a relatively inexpensive 
alternative. 

The U.S. Air Force should prepare for the future by initiating 
and, in some cases, increasing its R&D in support of the use of the 
nontraditional architectures. Most immediately, it needs to augment 
the existing tool and technique set with aida for analyzing, design­
ing, testing and evaluating distributed systems. Such systems are 
already being built or are proposed to be built to meet current per­
formance requirements. 

It is generally agreed that one way to improve software produc­
tivity is to reuse as much software as possible. However, there is 
disagreement as to the proper strategy for reusability. For in­
stance, some experts say the concentration should be on reusability 
at the lowest, or module level, while others feel that reusability 
should be considered at the higher levels of specification and 
design. Still others claim that in the near-term a more certain pay­
off is to be achieved by reusing generic and application-specific 
software support tools such as source language level debuggers and 
simulation tools. 

After much debate, the group came to recommend the following 
order of priority for concentration of resources for software reus­
ability. 

1. Reusable support tools, within all three generations of en­
vironments; 

2. Reusable "models" for specifications and design of applica­
tion-specific functions; 

3. Reusable major subsystems such as message handlers, communi­
cator protocol processors, etc; and. 

4. Reusable Ada packages for "mission software," where possible. 

2.1 .Review of the 1976 Summer Study 

In 1976, the Air Force Studies Board (AFSB) devoted a summer 
study to "Operational Software Management and Development for u.s. 
Air Force Computer Systems." That study made seven major 
recommendations. This section addresses the relationships of the 
1983 Summer Study on Methods for Improving Software Quality and Life 
Cycle Cost to the 1976 recommendations. 

1. 1976 Recommendation: "The development contract should be 
preceded by a separate contract for detailed system design require­
ments and no commitment be made to development until the design re­
quirements are completed. The detailed system design requirements 

8 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


work may often be performed usefully by competing contractors on a 
level-of-effort contract." This recommendation resulted from the 
finding that often the u.s. Air Force committed to dollars and sched­
ules in a system development before the interrelationships and func­
tionality of the system were fully understood. 

The 1983 Summer Study group supported this recommendation by once 
again advocating more frequent use of prototyping as an acquisition 
strategy; the advancement of technologies for rapid prototyping and 
communication of requirements among the customer, program office, and 
contractor( a); and supported competitive contract definition phase 
acquisition. 

2. 1976 Recommendation: ·~enever possible, the development 
should proceed through a series of deliveries. Each should stand by 
itself, not require a rework of its predecessors, and each should be 
of tangible use. During this period, strong feedback is needed from 
the using organization and the maintaining organization to the devel­
opment activity, in order to correct any recognized problems." This 
recommendation was motivated by the experience that during develop­
ment too much was often attempted at once. 

The 1983 Summer Study group fully endorses this acquisition 
philosophy and encourages the u.s. Air Force to employ it. The study 
group was not aware of many cases where it had been tried as an ini­
tial strategy but many where it was forced due to schedule slips. 

3. 1976 Recommendation: "The System Program Office, especially 
during the detailed system design requirements phase, should be (a) 
responsible also for system engineering, (b) empowered to make trade­
off& within the system to optimize it, and (c) charged with balanced 
consideration of the systems development and life cycle. To improve 
the life cycle aspects, the using and the maintaining organizations 
should participate formally and continually in both the detailed sys­
tem design requirements and the development phases as part of the 
SPO." This recommendation reflected the always potential conflict 
between the optimization of the systems development and total life 
cycle considerations. 

The 1983 Summer Study group had similar concerns and made several 
recommendations dealing with designing for ease of modification: pro­
vision of the same software engineering environment for operations 
and maintenance as for development; involvement of eventual users and 
systems supporters in all life cycle considerations; development of 
comprehensive program data bases and their transfer to the using and 
supporting commands; and participation of using and support as well 
as developing organizations in establishing milestone success cri­
teria. 

9 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


4. 1976 Recommendation: "The USAF continues (SIC) to advance 
the state of software tools through continual research, development 
contracts, and support of and coordination with the DoD Software Man-
agement Steering Committee in its efforts toward standardization of 
high order languages." This recommendation recognized the contribu­
tion tools had made available to software productivity and quality 
and the potential of proposed tools and those already under develop­
ment to do the same. 

The 1983 Summer Study group concluded the U.S. Air Force was not 
taking full advantage of existing proven tools and suggested a near­
term software engineering environment for achieving and ensuring the 
state-of-the-art in productivity and quality. Further, it recom­
mended enhanced R&D in advanced tools and techniques, and their prop­
er integration into second and third generation environments if the 
U.S. Air Force is to meet mid- and far-term requirements for produc­
tivity and quality. The group also recommended the creation of soft­
ware centers at the product division. 

5. 1976 Recommendation: "To establish continuity and account­
ability, the period of assignment of SPO officers should be related 
to SPO activities. For junior officers, the assignment should span 
the entire job, regardless of interim promotion. To help such offi­
cers, the USAF needs to develop . short courses on management proce­
dures, on how large computer systems work, and on management case 
histories." The point here concerned a lack of knowledgeable soft­
ware managers and a lack of coordination of assignments and reassign­
ments with the SPO's mission requirements. 

The 1983 Summer Study group discussed the SPO assignment issue 
but did not make a specific recommendation. However, there are ex­
tensive recommendations on the identification, training, and reten­
tion of knowledgeable software managers. The suDDer study group 
fully recognizes the contribution personnel make to the success or 
failure of a mission critical system. It further recommended the 
creation of a special organization(s) to assist in software acquisi­
tion and support. 

6. 1976 Recommendation: "The USAF maintains a vigorous program 
to improve the technology base. Among the topics needing attention: 

a. The structure of, and quantitative measurement of, the devel­
opment process. 

b. Extending present software development tools and adding new 
ones, such as validation of requirements and design. 

c. Computer hardware and software architectures to improve sys­
tem performance and to extend life-cycle utility. 

d. The applications of m1n1- and micro-computers, including 
problems of logistics, reliability, and maintenance, as well 
as function and performance. 

10 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


e. Data communications, input and output methode, and means for 
dealing with interfaces between systems." 

This set of recommendations is related to the rapidly changing 
computer technology and the U.S. Air Force's need to cope with and 
effectively utilize current as well as future technology. 

The 1983 Summer Study group endorsed and expanded on the first 
three of these recommendations by: 

a. Advocating the development of technology to provide better 
quantitative measures of software quality throughout the life 
cycle, and recommending the investigation of alternate life 
cycle models to deal with the application of emerging tech­
nology such as artificial intelligence; 

b. Fostering increased R&D in technology for software require­
ments, specification, and design, as well as tool design and 
analysis and the proper integration of these technologies 
into the life cycle; and 

c. Strongly emphasizing the need for R&D in technologies to 
allow the U.S. Air Force to use existing and near-future cap­
abilities of distributed architectures, highly parallel 
architectures, artificial intelligence oriented architec­
tures, etc. as well as the need for investigating the use of 
the new MIL-STD 1862 computer architecture in U.S. Air Force 
embedded applications. 

7. 1976 Recommendation (This final major recommendation is re­
lated to U.S. Air Force involvement in the DoD Software Management 
Committee.): "The U.S. Air Force Systems Command strengthens (SIC) 
its support of the participation in this committee by the USAF, pro­
viding a stronger focal point for its own activities to promote such 
support. The present organization, the Directorate of Computer 
Resources Development Policy and Planning, in AFSC, does not call 
for the rank, staff size, or charter that such a focal point organi­
zation requires." 

Since the Summer Study group was in communication with the plan­
ners of a USAF Scientific Advisory Board study that was to address 
such management issues, it did not review this specific recommenda­
tion. 

11 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


3.0 IMPROVEMENT OF CURRENT MANAGEMENT PRACTICES 

One of the more important areas in which the U.S. Air Force needs 
to improve the expertise of its management personnel and the use of 
management tools and techniques is in the acquisition of software­
intensive systems. Software systems must be more intensively managed 
than comparable hardware systems since these typically undergo sig­
nificant changes over their life cycles. Support systems to maintain 
requirements, specification, and design baselines create a broad 
definition of the delivered system for the entire life cycle. Manu­
facturing support facilities for hardware generally remain with the 
vendor. 

To acquire higher quality, more efficiently produced software, 
the u.s. Air Force must improve its ability to estimate and manage 
cost and schedules as well as assess development status. Case his­
tories relating to cost profiles, effectiveness of cost-estimating 
tools, use of management metrics, and project status reporting are 
required. Furthermore, a uniform acquisition policy and expertise in 
its application are required to properly control the software project 
throughout its life cycle. Finally, software acquisition management, 
data reporting, and tools must be a prominent part of government 
requirements for acquisition of software-intensive systems. Evalua­
tion of these factors in contractors' proposals must be part of con­
tract awards for software-intensive systems. 

Three principal areas are addressed to improve the acquisition of 
software systems. First, the process of acquisition management is 
examined for improvements in life cycle considerations, acquisition 
strategies, and the appropriate use of standard terminology and 
metrics. Second, a Software Acquisition Management Center is recom­
mended to serve as a pool of expertise from which the SPO may seek 
advice, and to provide a mechanism by which new technology may be 
transferred to the acquisition process. Finally, personnel problems 
are discussed, with recommendations as to how to identify, train, and 
keep skilled SPO personnel. 

3.1 Acquisition Management 

3.1.1. Introduction 

The requirements definition process is, in the subcommittee's 
judgment, inadequate for USAF system acquisition needs. Studies on 
the economics of software and surveys of management indicate that the 
highest economic leverage point and the largest management problem 
area is the definition of user-command requirements. Previous devel­
opments of tools and techniques for support in this area have concen­
trated on design and not on requirements-refinement by the using com­
mand and SPO. The present process results in misunderstanding among 

13 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


using command, SPO, and the contract; inconsistencies in require­
ments; untestable and untraceable requirements; inaccurate cost and 
schedule estimates; and costly pre-allocation of function, which 
unnecessarily constrains design and provides inadequate support for 
budget/schedule tradeoffs. 

Inadequate attention is being given to software life cycle con­
siderations during systems definition, development, and operation. 
This often results in significant delays in achieving a U.S. Air 
Force software-support capability, costly interim contractor opera­
tional software support, and the introduction of expensive ineffi­
ciencies into the operational software-change process. 

As a result of new technology providing hardware that is smaller, 
more compact, and faster, the requirements for U.S. Air Force weapon 
systems are more complex and costly. As a consequence, systems are 
becoming increasingly difficult to develop and support. The same 
sophistication that enhances performance often creates problems with 
system reliability and nightmares for logistical support personnel. 
These systems, characterized by distributed J!lultiprocessor architec­
tures, depend on complex interactive software to integrate numerous 
hardware devices. System complexity can reasonably be expected to 
increase, with the demands on software engineering certain to follow. 

3.1.2 Issues 

The present SPO requirements definition process is inadequate to 
support clear and consistent communications of requirements, accurate 
and complete statements of needs, useful identification of priori­
ties, and quickly available data for system analysis in response to 
changing budget and schedule demands. Such support is required in 
assessing the continued impact of changes in requirements throughout 
development and life cycle maint,enance. Without it, original func­
tionality, schedule, cost, and quality might be compromised. 

Insufficient planning particularly with respect to system 
engineering is accomplished prior to undertaking software­
intensive system acquisitions. This shortcoming leads to system­
level decisions that present severe difficulties to software acquisi­
tion, and often results in costly overruns, scheduling delays, and 
unsatisfactory system capabilities. 

One aspect of poor system planning is improper allocation of com­
puter hardware. Reviews of specific projects by the panel indicated 
that planned hardware reserves (usually 50 percent) are as a matter 
of practice not provided. The typical growth as software require­
ments become better understood forces the undesirable consequences of 
assembly language instead of approved HOL' s, and a large amount of 
optimization, which results in the compromise of the structural 
integrity of the software. 

14 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Good strategies for acqu1r1ng complex software systems are often 
overlooked due to misconceptions concerning the regulations applic­
able to development of a pure hardware system. 

Intense management of software product baselines is necessary. 
One factor that has a significant effect on software development and 
life cycle costs is the evolutionary change that each major system 
undergoes to upgrade its capabilities and extend its useful life. 
The characteristic flexibility of software makes it convenient to 
accomplish changes of capability and tactical doctrine. Making 
changes of similar functional capability in hardware would require 
numerous modifications of computer hardware, sensors, or actuators in 
aircraft or other ·computer-based equipment -- at considerable labor 
and expense -- with an unacceptable amount of system down-time. 

System evolution is not the only reason for software modifica­
tions. Throughout the development process, changing requirements -­
whether essential, misunderstood initial requirements, or indisput­
able deficiencies -- result in numerous changes to the software. 
During the operational phase, changes might result from detected 
errors, tactical changes, or a requirement for performance improve­
ments. 

For present U.S. Air Force software-intensive systems, a poor job 
is done of developing software requirements and designing application 
software to accommodate and expedite the numerous changes that an 
operational system must be expected to undergo. Good planning for 
the software life cycle, design of systems and software to accommo­
date life cycle requirements, and early acquisition of all necessary 
support resources during program development are essential to reduce 
software modification costs and inefficiencies as well as improve the 
life cycle management capability. 

Inadequate standards hamper development. The software acquisi­
tion process of the U.S. Air Force is hampered by inadequate, ambig­
uous, and outdated standards and terminology. Largely because of 
this, communication within the software community -- and between man­
agers of software development in particular -- suffers. In the 
course of the AFSB summer study, briefers invariably volunteered or 
agreed on the communication problem. The origin of the problem 
probably lies in the fact that software development began as a 
"cottage industry" at numerous places and times, when the jobs that 
were undertaken were sufficiently small such that a "family," or a 
few people, could accomplish the work. Driven by the expanding cap­
abilities of computer hardware, software designs have grown larger 
and more complex, demanding cooperation between members of extended 
"families." Lacking a common language and shared measuring tools, 
these individuals -- like the builders of the Tower of Babel -- found 
themselves in chaos. Software development has entered an era in 
which standard terminology and metrics must be developed, 
promulgated, and enforced. 

15 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The life cycle of software is in some ways quite siailar to that 
of hardware. System requirements must be allocated to one just as to 
the other, and although the technology and methodologies differ, both 
must go through a definition, design, and development phase that 
requires similar analysis and test considerations. A diatinguishing 
factor for software is that its maintenance phase during aysteas 
operation is essentially continuous, repeating the steps uaed in 
initial system development, but with rbe additional experience of an 
operational requireaents baseline. 

This reiteration of development actually allows application of a 
consistent discipline for software changes. Although such a disci­
pline is rarely seen for operational system evolution, it is attempt­
ed by USAF Air Logistics Centers once they finally acquire their 
software support systems. The Joint Logistics Commanders are also 
actively pursuing a standard software life cycle. 

Given that, throughout a software life cycle, a system undergoes 
numerous changes through reiterative development·, two major aspects 
of software need to be considered in improving software life cycle 
management and costs. First, the design of the software must be such 
that expected modifications can be implemented efficiently and effec­
tively. This means that requirements for the anticipated system and 
its software growth, with expected changes, must be included in the 
initial system definition and software design. Concerns such as 
documentation, software modularity, built-in module testability, 
interface control, and global data bases make software easy to under­
stand and easier to modify by people other than the development con­
tractor. Second, the resources necessary to modify the software and 
to test changes must be available when needed. This capability is 
essential when transferring a developed system to a supporting orga­
nization, such as u.s. Air Force Logistics Command, that is to assume 
total responsibility for software support. 

Over the past decade significant strides have been made in struc­
turing software design. These are: use of structured programming, 
top-down design, higher-order languages, modularity, information hid­
ing designed in memory, and processing reserve. The use of these 
tools, however, should be enforced more strictly. Too often, under 
threat of delays or promises of lower costs, a program office allows 
a contractor to use existing unstructured code or simply waives good 
software design practices. These alleged avoided costs and/or delays 
are rarely weighed against possible adverse impact on the total life 
cycle. 

First of all, contractors must be pressed to follow good software 
development practices. This can be done by explicitly specifying the 
techniques desired in the Request For Proposal (RFP) and providing 
incentives for excelling in the human engineering of software 

16 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


designs. Software design and development requirements must be speci­
fied by the government, rigidly adhered to, and consistently applied 
to system development. Once the government goals for software devel­
opment techniques are identified, the contractor must identify the 
specific methodology he will use to satisfy them. This will be 
accomplished by the Computer Program Development Plan (CPDP). The 
proposed CPDP, the assessment of contractor internal software devel­
opment standards if they differ from the CPDP, and the contractor's 
past performance in similar software development efforts should be 
considered when assigning contracts. 

One U.S. Air Force requirement that is often identified after 
development begins is the operational software support concept. 
Operational support varies from few changes for stable software sys­
tems to large changes on a cyclic basis for critical defense systems. 
Such systems might be supported by a u.s. Air Force organization, the 
original development contractor, the winner of a competition among 
contractors, or a contractor/government solution. Each of these sup­
port methods might require different levels of documentation and 
resources (manpower, facilities, equipment, etc.). Software design 
can particularly enhance supportability through any of these methods 
if addressed early enough in planning. The operational support con­
cept must be identified for contractor RFP evaluation. 

Requirement changes adversely affect life cycle. Many require­
ment changes that are imposed on a system do not address total life 
cycle impact. For example, a typical engineering change proposal 
(ECP) submitted during the development phase will have a cost associ­
ated with design as well as coding times for the actual software 
change and required descriptive documentation changes. But seldom 
does assessment of an ECP include its effects on future support 
factors such as added complexity, hindered future modifiability, 
needed special knowledge, additional required verification, or 
effects on other software components. Except to correct mission­
critical deficiencies, changes should only be allowed in phased 
blocks, and all changes should be assessed in depth for possible life 
cycle effect. 

Finally, for those instances in which sufficient detail is avail­
able to specify software support requirements but a conscious deci­
sion is made not to implement -- or delay implementation of -- those 
requirements, the decision must include a software, as well as a sys­
tem, life cycle impact assessment. Further, the decision should be 
made jointly by SPO oversight management and the using and support 
organizations, not by the SPO management alone. 

Software support resources are the first to be cut back. Program 
documentation and resources for support are the first victims of 
dollar shortages during development. Delayed planning, design, and 
acquisition of the resources required to support the operational 

17 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


software can result only in higher support cost and delays in u.s. 
Air Force operational support. It is essential that the u.s. Air 
Force software support requirements be included as part of the con­
tractor's software development environment. This serves two pur­
poses: (1) the contractor will be required to assess and build his 
internal capability in light of his understanding of the U.S. Air 
Force operational support requirement, and (2) the government will 
not receive a poor collection of tools that were not used by the con­
tractor's software development engineers. 

Finally, the software support environment should have fully veri­
fied and documented tools. This facility may be used by a variety of 
contractors or government personnel; therefore, it must be self­
contained and efficient. Assessment of this delivered support envi­
ronment by the supporting agency should be included as a part of the 
development program. Although the U.S. Air Force Operational Test 
and Evaluation Center has developed a questionnaire and methodology 
for evaluating software support environments, such environments are 
rarely available for evaluation on new developments until well after 
initial operational capability of the system. 

Standard acquisition models do not fit all software molds. A 
system acquisition strategy is defined by the phases, milestones, and 
decision points established; the schedule associated with them; and 
the contractual roles and re'lationships among the users, buyers, 
developers, and support organizations. For many acquisitions that 
don't fit the standard, inappropriate acquisition strategies for 
software cause unnecessary cost and risks to the entire system, with 
resulting costs many times that of the software. Several U.S. A~r 
Force and DoD studies have concluded that alternate procurement 
strategies are needed for the software. 

The traditional U.S. Air Force system acquistion follows the life 
cycle shown in Figure 1. At the initiation of the Full Scale 
Engineering Development (FSED) phase, functional requirements are 
assumed to be completely defined. The bulk of the software develop­
ment effort is in the FSED phase. The software life cycle is defined 
in Figure 2. It depends on a fixed set of requirements that are then 
implemented through system design, code, and test activities. Ini­
tial software cost and schedule estimates as well as funding commit­
ments for FSED are often based on one-time performance of these 
activities in the sequence shown. · 

There have been many instances of cost and schedule overruns for 
software development in U.S. Air Force system acquisitions. One 
cause of these overruns has been the use of an acquisition strategy 
that initiates the FSED phase with inadequate information about sys­
tem requirements. This leads to poor estimates of cost and schedule 
prior to FSED, and changes in requirements during system development 
that necessitate the repetition of software development activities. 

18 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


FIGURE 1 System acquisition life cycle for embedded systems. 

19 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Figure 2 Software life cycle for embedded systems. 

20 

SOFIVAU SRCUICAtlOII 11JD1L 
ipAafiTIOiflJIG TUDIORS 
*ALOOli111C DUIQI 
*D.UAIASI DISlQI 
*TIKDIC. SIQUDCt. ACCUUCT 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Unanticipated and unnecessary cost can be avoided if the uncertainty 
in requirements is recognized and planned for in the acquisition 
strategy. 

Inadequate definition of requirements can be the result of ini­
tiation of the FSED phase without completing the Concept Definition 
and Validation phases. For some types of systems, the difficulty in 
defining requirements is not one of insufficient time and prepara­
tion. Several studies, including a recent one by AFCEA2, have 
noted that the requirements for Command, Control, and Communications 
(C3) systems, in particular, may be difficult to determine. These 
systems support human decision makers with automated aids. The 
requirements of a c3 system might be affected by current military 
policy, the preferences of particular commanders, and the functions 
of many other interacting systems. There might be no prior exper­
ience upon which to base requirements. Paper studies are not always 
adequate to determine system performance specifications; some opera­
tional experience and feedback is essential. 

Even when requirements are understood, they can be large and com­
plex, difficult to communicate to system developers and to achieve 
technically. A recent survey of managers involved in c3 systems 
acquisitions at the Electronic Systems Division (ESD) cited such dif­
ficulties with requirements as the most frequent cause of risk in 
software acquisition. Choosing an appropriate acquisition strategy 
can considerably lessen the risks described above while providing 
users with better and earlier operational capabilities. 

It should be noted that software is both a source of cost and 
schedule risk in system acquisition as well as a means for reducing 
risk. There is a limit to the size and level of complexity of a 
software effort beyond which it becomes unmanageable. Acquisition 
strategies that bound a system development effort are beneficial in 
reducing software problems. 

3.1.3. Recommendations 

In many situations reviewed by the Summer Study group, improving 
software life cycle management involved only closer adherence to 
established military standards and enforcement of good engineering 
management discipline. Many of the required policies and disciplines 
already exist but are just not enforced or are loosely interpreted by 
SFO personnel. Often these policies and disciplines are ignored for 
expediency or to meet cost and schedule constraints. 

The following principles of sound software engineering are 
common to well-managed projects: 

21 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


• A systematic methodology into the planning and decision pro­
cess should be installed that thoroughly assesses decision impacts, 
documents those assessments, coordinates the effects with organiza­
tions needing that information, and then makes a conscious decision 
to proceed or delay knowing the full risks involved. 

• Software engineering practices should be identified in the 
government's requirements and strictly enforced. Staffing require­
ments should be included in the RFP, and evaluation of the contrac­
tor's response in the CPDP should be included in contractor selection. 

• Changes to system or software requirements should require a 
detailed software life-cycle effects assessment. This assessment 
should be performed by the Computer Resources Working Group that 
might task the supporting organization or Independent Verification 
and Validation (IV&V) contractor. 

• Program decisions affecting life cycle considerations should 
not be made unilaterally by the SPO but should require close coordin­
ation with user and maintenance organizations. 

Furthermore, well-managed projects require: 
• Development of the Computer Resources Integrated Support Plan 

(CRISP) as part of the requirements definition process and included 
with the RFP package. 

• Program Management Directive (PMD) identification of the u.s. 
Air Force software support concept, required IV&V, and the U.S. Air 
Force software support organization. The PMD will identify mandatory 
U.S. Air Foree Logistics Command and using-command early planning 
support. 

• Contractor delivery of a production quality support environ­
ment as a part of the contract. Near-term activity should require 
development and delivery no later than Program Management Responsi­
bility Transfer (PMRT). Earlier delivery should be encouraged and 
rewarded. Mid-term activity should be directed toward making the 
contractor's development environment also the eventual operational 
support environment. Far-term activity should be directed toward a 
common or standard environment for development and support of all 
systems. Strong support agency involvement in planning the support 
environment is essential. 

• Progress reports by SPO management on software development 
activities (e.g., assessment of program), CRISP status, IV&V status, 
etc., at program management reviews. 

22 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


• SPO development of a comprehensive program database that will 
be transferred to the using and supporting commands where required 
and will also support development-phase management decisions. Ini­
tial definition of this program database should be made by the AFSC 
focal point. 

• Basing of program development milestones, such as system 
requirements review, software requirements review (part of the new 
Joint Logistics Commander software development standard), and the 
preliminary and critical design reviews, on quantitative criteria 
that must be satisfactorily met before moving to the next milestone. 
Milestone success criteria should be developed among participating 
government organizations (not AFSC unilaterally) and well understood 
and agreed to by the contractor. Criteria must be specific and 
measurable, failure to meet criteria should have assigned penalties, 
and exceeding the metrics should have associated rewards. 

The Air Force should continue leadership through the Joint 
Logistic Commanders in improved software military standards. The 
U.S. Air Force must develop, or cause to be developed, metrics or 
measures of effectiveness for specifying quality, costs, schedules, 
performance, and the like. The u.s. Air Force could make this 
recommendation to the Joint Logistics Commanders for standard 
terminology and metrics, and take the lead in their development and 
promulgation. In the near term, the u.s. Air Force ought to 
emphasize the collection of data on the measures cited, using the 
database to develop norms of effectiveness. Continuous collection of 
data would allow periodic updating of the norms. 

The U.S. Air Force should make an exhaustive survey of the pro­
cedures used in industry and elsewhere for software development con­
trol. Using the information thus compiled, it should devise SPO pro­
cedures to guide the director and his software assistant in software 
acquisition. It is important that modern management information sys­
tems be used to implement the revised SPO procedures. 

Conduct high level reviews of software acquisition strategies. The 
U.S. Air Force must consider system and software risks early in a 
software intensive program and choose appropriate acquisition strate­
gies to reduce any high risks that are identified. To ensure that 
this happens, a high-level review, by knowledgeable people, of major 
software-intensive programs should be conducted early in the life of 
the system. The proposed Software Acquisition Management Center 
should have oversight of acquisition strategies. 

Encourage use of long lead prototypes for difficult software. In 
system acquisitions, it has been customary to identify critical long­
lead items, the production of which must be started early enough to 
avoid delaying delivery of the entire system. In some systems, soft-

23 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


ware might be the long-lead item. While the current policies and 
regulations do not preclude use of prototypes and early initiation of 
software development, this practice is not encouraged and is used 
infrequently. U.S. Air Force policies and procedures should encour­
age these strategies. Sufficient time should be allocated at the 
outset to carry out such strategies prior to initiating FSED. The 
up-front additional cost could average less than 5 percent of total 
acquisition costs, while the potential offsetting savings are 
enormous. 

Provide system definition and evaluation facilities. If the USAF 
encourages the use of prototyping, there should be facilities readily 
available for prototyping and evaluating alternative system concepts 
in terms of operational capability, technical risk, and cost. Facil­
ities may exist in several locations so that facility capabilities 
are accessible to users and planners during the Concept Definition 
and Validation phases. A common set of capabilities might be defined 
and implemented for a specific application area. The AFCEA report2 
identifies a Rapid Requirements Definition Capability (RRDC) for this 
purpose. Rome Air Development Center (RADC) has initiated a study of 
rapid prototyping, and is developing a C3 Simulation Capability. 
Similar facilities might be used to evaluate a system during FSED and 
to study the feasibility of proposed modifications. The WIS program 
(WWMCCS Information System) establishing a Development and Evaluation 
Facility, the initial role of which is to permit the test and evalu­
ation of software. It could evolve into a prototyping capability as 
well. 

Encourage the reusability of software. The u.s. Air Force should 
exploit the potential for reusing software in mission-critical sys­
tems. Major application areas should be studied for commonly used, 
separable functional capabilities, and generic specifications should 
be developed for these functions. Experiments should be performed to 
apply current techniques, such as application generators, for gener­
ating software from specifications. Such techniques are used in some 
commercial applications with success.3 The WWMCCS Information Sys­
tem (WIS) is using this approach for a common user subsystem. Pro­
gram offices should be given incentives to encourage the use of 
·existing military and commercial software for major portions of sys-
tem components. Incentives should be provided to software designers 
as well as program managers to modify requirements, where possible, 
in order to make greater use of off-the-shelf commercial or military 
software or to permit joint development of software for more than one 
system. 

Alternative acguisition models can reduce risk. Acquisition risk of 
software can be reduced by providing tools such as prototypes and 
simulations that allow preliminary investigations of system require­
ments issues before commitments are made to unrealistic or unachiev-

24 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


able capabilities, schedules, and costs. 
can help to adapt systems performance 
become better understood. 

Properly designed software 
as requirements change or 

A number of innovative risk-reducing system acquisition 
approaches have been recommended in recent studies and reports. Some 
of these approaches are being used in u.s. Air Force system acquisi­
tions with increasing regularity. Roberts4 describes acquisition 
strategies appropriate to c3 systems. 

The following are brief summaries of acquisition strategies that 
should be considered for risk reduction in software acquisition: 

Prototyping. Rapid prototyping, mockups and simulations can be used 
prior to FSED to experiment with human interfaces, processing algo­
rithms, performance prediction, software sizing, and other aspects of 
a system. Working prototypes can be evaluated in operational exer­
cises. These approaches provide information to improve the decisions 
about system requirements and cost. 

Incremental funding and delivery of software. In order to specify, 
develop, and deliver increments of system capability, budgeting and 
acquisition policies and procedures should be modified so that this 
approach is recognized and encouraged. It is now possible but not 
always easy to fund partial developments without some assurance that 
there will be funding for the total system. This strategy plans for 
but does not deliver a complete system capability all at once. A 
series of system increments are defined, acquired, delivered, and 
used. Each increment should be smaller and more manageable than the 
"all-up" system and deliverable in considerably less time. Such an 
approach can provide users with an earlier operational capability, 

·allow for growth of experience by both users and developers, and 
accommodate changes in requirements based on user feedback as well as 
changes in the operational environment. This approach is particu­
larly suitable when there is uncertainty about initial requirements. 
It permits containment of costs while a limited operational capabil­
ity is tested and evaluated under realistic conditions. Unlike a 
prototype, the delivered system is expected to be used and main­
tained. Pre-Planned Product Improvement (P3I) and Evolutionary 
Acquisition are two forms of this strategy. The AFCEA studyl 
details the evolutionary acquisition approach. 

Multi-phase acquisition. Separate and sometimes competitive con­
tracts can be given for portions of the system acquisition, such as 
the requirements definition phase or system design, independent of 
the remaining implementation. Such an approach places more emphasis 
on the early phases and provides better information for cost estima­
tion and software system sizing. It also provides intermediate 
decision points where the cost of the system and its capabilities can 

25 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


be renegotiated more easily, based on the added knowledge, than in a 
single-step FSED. ESD's SPADOC program recently completed a competi­
tive Requirements Segment in which there were demonstrations, perfor­
mance modeling, and trade studies leading to an A Specification, B 
Specifications, management plans, and an operational concept. 

3.1.4 Cost/Benefit 

The cost of implementing a standards review would be minimal. It 
is estimated that a DoD-wide team of perhaps eight people, working 
part time for a year could accomplish the task. The team should be 
sponsored by the Joint Logistics Commanders. When ita task is com­
plete, its recommendations should be adopted by the AFSC and its SPOs 
and appropriate contractors. 

Adequate study of industry practices in software development con­
trol should take about one year and cost about Sl million, including 
service charges by industry. Conclusions reached by the study group 
could be implemented experimentally in a medium-sized program for 
about SSOO,OOO, the one-time cost of a stand-alone computer and 
peripherals. The SPO manning table should not be reduced in expec­
tation of economics. The computer, with its procedures and data 
base, should become dedicated and pass on after IOC to the O&M 
agency. When these procedures are generally used in U.S. Air Force 
programs, the cost of the experiment should apply for each applica­
tion. 

The benefits of establishing standard terminology and metrics is 
difficult to estimate. But to the degree that miscommunication and 
inadequate management metrics cause cost and schedule overruns in the 
tens of percent, there is potential for savings. Standard terminol­
ogy and metrics coupled with robust management procedures could save 
hundreds of millions of dollars yearly until the acquisition system 
has been overhauled. 

The benefits of automated program control were mentioned in the 
discussion of standard terminology and metrics. A rough estimate was 
hundreds of millions of dollars per year until the acquisition pro­
cess has been overhauled. In addition, incalculable benefits would 
accrue in dealing with Congress and in terms of the confidence level 
of top U.S. Air Force commanders. 

3.1.5 Risk 

Implementation of standard 
risk. It might be difficult to 
different from their own, but 
solved before, and can be solved 
the terminology and metrics used 
changing technology. 

terminology and metrics has a low 
induce contractors to adopt standards 
this problem is not new, has been 
again. It should be emphasized that 
should be reviewed to keep pace with 

26 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


3.2 Software Acquisition Management Center 

3.2.1 Introduction 

To acquire software that is higher in quality and more efficient­
ly produced, the U.S. Air Force must improve its ability to manage 
and estimate costs and schedules and to assess development status. 
Further, to use the tools effectively and interpret software project 
status, personnel management expertise and a uniform acquisition 
policy are required. Finally, software acquisition management, data 
reporting, and tools must be evaluated continuously and changed as 
necessary to keep pace with advancing technology. The issues con­
tained herein and the recommendations to AFSC conclude that in addi­
tion to significant upgrading of acquisition management tools, a 
Software Acquisition Management Center must be established to proper­
ly address the technology integration of existing commercial products 
and also to assist SPO managers in the use of such tools and methods. 

The mission functions assigned to this center will also support 
the development of software standards and their promulgation to SPO 
and other software managers, and the technical oversight and 
expertise that such a group would provide. 

The Summer Study group concluded that software management per­
sonnel 1 although managing a highly complex software-intensive pro­
duct, are poor users of computer automation to support their own 
decision making. Most notable is the limited use of automated tools 
such as software cost and schedule models, risk assessment, manpower 
loading assessment trade-off models, specification generation systems 
from project databases, and a general type of management support 
called decision support systems. A Project Management Decision Sup­
port System is recommended to integrate toolsets into a single data­
base and provide a human-machine interface to a database management 
system, a dialogue graphics system, and an integrated set of models 
that can be used by the software manager. 

3.2.2 Issues 

Inadequate project planning prior to development of the Computer 
Resources Interface Support Plan (CRISP) results in severe project 
difficulties during development and fielding of software-dominant 
systems. The u.s. Air Force must increase the use of automation in 
supporting project management decision making for complex, software­
intensive systems. This issue was stated in Section 3.1, Acquisition 
Management, but is restated here for emphasis. Managers with knowl­
edge of the technical details of software-intensive systems who also 
have experience in management of such systems are in short supply. 
This seriously aggravates the problems of supporting the senior SPO 
manager during the formulation phase of a project and also in over­
sight and status assessment during contract performance. At critical 

27 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


junctions such as key design reviews, greater expertise and special­
ized tools and techniques are sorely needed to properly manage the 
levels of detail and to resolve problems that arise from in-depth 
reviews. This issue will also be treated in the next section, Per­
sonnel. It has been stated in this section because it supports the 
need for a Project Manager Decision Support System as a vehicle to 
gain productivity increases. It also supports the need for estab­
lishment of a Software Acquisition Management Center to provide 
expertise to SPO and other software managers. 

Inadequate tools, procedures and data are chronic circumstances 
inhibiting project management personnel from performing competent 
management of software-intensive systems. Specific areas in which 
inadequate tools are used in projects reviewed by the Summer Study 
group include the following: 

• Requirements collection and analysis tools for the "front-end" 
portion of acquisition management. Such tools and databases serve as 
an excellent vehicle for maintaining a baseline, as well as dissemin­
ating requirements information to other agencies and users; 

• Cost, schedule, and risk assessment tools for improved 
analysis of important project parameters; 

• Cost and schedule estimation tools and methods to provide more 
accurate assessments of completion costs and schedule; and 

• Project Management Decision Support Systems that use available 
technology of interactive computers, on-line databases with query 
languages, and models for performing the analysis and generation of 
information on a graphic medium for use by project personnel. 

The requirements definition process and use of automated require­
ments collection and analysis tools, in the opinion of members of the 
Summer Study, are inadequate to support the u.s. Air Forces' system 
acquisition needs. Studies on the economics of software and surveys 
of management indicate that the highest economic leverage point and 
the largest management problem are related to poor definition of 
requirements at the user and SPO interface. This results from an 
inadequate systems engineering activity that takes the definition of 
using command requirements and translates it into a system which 
incorporates as many of the user's needs as possible while at the 
same time satisfying other acquisition constraints such as available 
technology, cost, and schedules. Previous development of tools and 
techniques for support in this area have concentrated on interfaces 
between existing requirements specifications and design activities 
and not on the requirements collection phase by the using command and 
SPO. This process results in misunderstanding among using command, 
SPO, and contractor personnel; inconsistencies in requirements; 
untestable and untraceable requirements; inaccurate cost and schedule 
estimates; and costly premature selection of computer hardware or 
inappropriate allocation of functions to computer hardware. This 
constrains design and implementation unnecessarily and provides 

28 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


inadequate support for budget/schedule/risk tradeoffs. That is, the 
systems engineering procese, which selects major system components 
and develops the system requirements, must be the prime focal point 
for improving the acquisition process. At present this process is 
nonautomated and labor intensive; errors often remain undiscovered 
well into the design and system testing phase. 

3.2.3 Recommendations 

The Summer Study group recommends that the AFSC establish a Soft­
ware Acquisition Management Center (SAMC) to: 

• Develop, review, and impose software acquisition policies, 
strategies, and regulations and standards necessary in software­
intensive systems; 

• Direct the development and use of improved project management 
support tools; 

• Assist the u.s. Air Force in the application of tools and man­
agement policies applicable to software systems; 

• Define and collect project management historical data and 
design decisions and modify management models to more accurately 
estimate such parameters in future acquisitions; and 

• Develop a Project Management Decision Support System (PMDSS), 
distribute this technology to user organizations, advocate the use of 
such automated tools, and support software managers. This PMDSS 
would contain models for: 

- Cost and schedule estimating, and risk assessment; cost 
and schedule control during contract execution; require­
ments collection and analysis; 

- Automatic specification generation from requirements and 
other project information in a project database. 

Members of the Summer Study group also felt that AFSC policy 
should consider establishment of SPO software engineers resident at 
the contractor's facility to monitor and assess development of large, 
complex or high-risk programs using indicators that may not be quan­
tifiable or contractually reportable.S The Summer Study group 
believes that more resident, qualified SPO software engineers and 
fewer formal on-site visits would give a substantially better view of 
software status and improve cooperation between the SPO and the soft­
ware contractor. 

Systems requirements definition tool. As part of improving the sys­
tem engineering process, the Summer Study group recommends the use of 
a system requirements definition tool at the U.S. Air Force program 
management level to facilitate project management personnel and user 
organization communications, to assist in the requirements analysis 
function, and to help control changing requirements throughout the 
entire life cycle. The present SPO requirements definition process 
is inadequate to support clear and consistent communication of 
requirements, accurate and complete statements of needs, useful 

29 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


identification of priorities, and readily available data for system 
analysis in response to changing budget and schedule demands. Such 
support is required in assessing the continued impact of changes in 
requirements throughout development and logistics phases. Without 
it, original functionality, schedule, cost, and quality are always 
compromised as a consequence of the inability to manage the large 
amount of interrelated information in specifications and other docu­
mentation. Functional capability of the system requirements defini­
tion tool includes the following: 

a. Static and dynamic analysis of the system requirements ele­
ments; 

b. Traceability of requirements to system, subsystem, and soft­
ware requirements through A, B, and C levels of specifications; and 

c. Traceability of cost model data to requirements elements to 
assist estimating cost and schedule impacts of changes. 

Cost estimatin and schedulin • Initially, the Software Acquisition 
Management Center software cost and 
scheduling to assist other management personnel. These 
experts would select, improve, and apply existing software cost and 
scheduling models and tools based on their experience from partici­
pating in a number of system developments. An effort would be 
initiated to standardize work breakdown structures and the use of 
several life cycle models that would allow a common framework for 
gathering historical cost and schedule information. Software cost 
history, schedule performance data, and reporting requirements would 
then be recommended for use by SPO personnel. 

The software cost and scheduling experts within SAMC would 
develop software costing and scheduling policy guidance and provide 
assistance to the SPO on individual programs. They would also 
develop and evolve new cost and schedule tools that are responsive to 
u.s. Air Force needs in the face of technological advances. In par-
ticular, one objective would be the development of software cost 
models not totally dependent upon estimated lines of code. This 
would permit estimation at a much earlier point in the project when 
lines of code are not available, a critical need for software man­
agers. 

Software status and quality assessment. The SAMC would also provide 
expertise to assist SPOs in the evaluation of software status. Ini­
tially, status data collection requirements could be adapted to and 
recommended for application on a specific project. In addition, 
metrics and indicators that best serve U.S. Air Force software status 
assessment would be defined and adapted to the particular application 
domain and project constraints. These would serve for evaluating 
performance and software quality status much earlier in the project 
history, as well as providing more quantitative measures of desired 
quality factors such as modularity, portability, and reliability. 

30 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Tools and techniques that apply empirical indicators or measures 
would also be developed by SAHC and they would be provided to the SPO 
for use in software status assessment. For example, the Summer Study 
group was briefed by Wolverton6 and a user, where the following 10 
leading indicators were used for management visibility. 

Ten Leading Indicators 
Reported 

Code Production 
Defect Removal 
Test Achievement 
Defect Rates 
Test Effectiveness 

3.2.4 Costs/Benefits 

Derived 
Schedule Index 
Problem Index 
Development Hours Index 
Development Cost Index 
Work Performed Index 

Listed below are the preliminary estimates for the establishment 
of a SAHC, development and maintenance of a decision support system, 
and the key tools that integrate the system into a "manager's work­
bench" concept. Tools include those for software cost and schedule 
estimating, status assessment, cost and schedule control, and speci­
fication generation. It is necessary that the u.s. Air Force perform 
a more detailed cost analysis of implementing this recommendation 
based on the number and extent of centralization/decentralization of 
software experts, the specific tasks to be undertaken, and the extent 
of the tools and components to be developed and maintained. 

Software Acquisition Management 
Item 

Staffing Project Support 
Project Management Decision 

Support System2 
Software Cost and Scheduling Tool 

Development/Maintenance 
Software Status Metrics 
Requirements Definition3 (SPO/User Level) 

NOTES: 

Center 
Cost 

SlO M/year 
1 M/year 

2 M/year 
2 M/year 

5 M/3 years 

1. Total costs from the items listed in the table above are Sl5 mil­
lion per year plus a SS million effort over 3 years. 
2. The cost of developing a Project Management Decision Support Sys­
tem is mainly the technology transfer of current research that is 
being performed in the field. 
3. It should also be noted that the requirements definition tool at 
each installation will require approximately $400,000 for software, 
hardware, training, and SPO feedback. Enhancement programs should 
begin two years later and should be funded at a level of $2 million 
per year. 

31 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The benefits of a Software Acquisition Management Center are sum­
marized as follows: 

• Acquisition policies will be kept more current with rapidly 
evolving technology; 

• A source of acquisition expertise will be available to the SPO 
and other software managers; 

• Software cost and schedule models as well as the expertise to 
apply them to a specific project will be greatly improved; and 

• Far better software development status information will be 
provided. 

It has been clearly established that substantial leverage can be 
obtained by discovering software requirement problems early, as con­
trasted to correcting such problems much later during the fielding of 
software-intensive military systems. The benefit of early quality 
estimate in cost and schedule is immeasurable when compared with the 
present uncertainty that exists when manual methods are used. This 
situation demands correction through substantially improved manage­
ment procedures based on quality information and valid estimates for 
completion. 

The benefits of an automated PMDSS could be very significant com­
pared to the manual, nonautomated methods in use at the present 
time. The substantial amount of information and the dynamic nature 
of change of this information require the use of a database system 
and query language. Linking the database elements to management 
models and providing a graphic presentation and hard copy output 
device in the hands of project managers will greatly accelerate the 
use of this automated management technology. One important advantage 
would be the improvement in response time required to obtain analysis 
of program changes compared to manual methods. This is highly advan­
tageous for complex decision making, where answers must be generated 
for numerous "what if" drills. More sophisticated schedule and risk 
assessment models will also provide understanding when important fund 
and schedule changes are contemplated, or when accommodations for 
requirements changes that always occur in large projects are neces­
sary. 

3.2.5 Risks 

It is believed that the risks associated with the Software 
Acquisition Management Center are low because no new technology is 
initially required. However, the SAMC would be expected to keep pace 
with evolving technology and use appropriate opportunities that 
become available in support of software costing, scheduling, and 
status assessment. Establishment of these management centers would 
complement current technological centers of research and would 
provide SPO personnel with access to sorely needed expertise during 
formative phases of a project. Risks inherent in these centers and 
the transfer of this technology to SPO personnel center primarily 

32 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


around organization and willingness of either SPO or SAMC personnel 
to pool expertise and operational know-how to formulate good manage­
ment practices. 

The risk of using cost estimation, schedule, and risk assessment 
tools is low because these tools are well established and shaken down 
by widespread use in industry. Cost and schedule-estimating tools 
are a must for managers of large or complex software projects. In 
industry, proposal preparers use coat-estimating tools for communica­
tion and arbitration between managers responsible for the entire sys­
tem (Company PMs) and the lower work package managers who have to 
agree on capability, cost, and schedule for their part of the 
software project. 

The risk of a requirements system at the project management level 
depends on the level of sophistication of models used to represent 
requirements elements and their interrelationships. The use of 
established methods such as data flow diagrams, Hierarchical Input 
Processing Output diagrams (HIPO), structured design techniques, or 
even the use of current requirements languages such as PSL/PSA or RSL 
have been shown to have considerable utility in the early phases of 
system design. Integration of existing tools such as data dictionary 
systems, structural design concepts, and the above-cited requirements 
languages will certainly provide considerable improvement over the 
use of manual techniques. 

The risk in a Project Management Decision Support System depends 
upon the level of technology and how great a change the use of this 
technology represents to the user. It is demonstrably clear that 
personal computers with interactive Basic, Spread Sheets, simple 
database management systems, and other inexpensive commercial soft­
ware have already given the manager a much higher level of computer­
aided decision support in recent years. 

The training a PM receives before a major SPO assignment will 
contribute to the acceptance of PMDSS, providing it addresses the 
needs of the manager and it is reasonably free of defects. It would 
be highly advantageous to work with a PMDSS in the Defense Systems 
Management College (DSMC), in the training that senior SPO personnel 
receive in automated management support. It would also be advan­
tageous for product divisions to use the same PMDSS as that used at 
DSMC for management training. 

3.2.6 Summary 

SAMC is recommended as one solution to the severe shortage of 
acquisition expertise and to provide infusion of management tech­
nology into the SPO. It would be a center to assist the SPO and 
software managers by developing useful military standards and helping 
adapt the standards to suit special funding, schedule, and other sys-

33 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


tem constraints. The next logical step in utilizing existing tools 
and techniques is their integration into a Project Management Deci­
sion Support System. Some of the existing tool sets that are avail­
able commercially are: cost and schedule estimation, risk assessment 
tools, and database management systems with a query language. All 
tool sets require calibration against historical databases of rele­
vant project information to obtain good estimation accuracy. Inter­
pretation for specifics of each project is also necessary since 
models are only guidelines and are subject to error if the wrong 
parameters -- number of instructions for lower-tier modules, develop­
ment factors, complexity estimates, etc. -- are used. 

A requirements system will greatly improve the "front-end" sys­
tems engineering process of software-intensive systems. Adoption of 
existing requirements languages by extending and enriching the 
descriptions for early phases of project definition will increase the 
use of these tools. 

The Project Management Decision Support System will integrate 
tool sets into a single database and provide a human-machine inter­
face to a database management system, a dialogue graphics system, and 
an integrated set of models that can be used by the software managers. 

3.3 PERSONNEL 

3.3.1 Introduction 

We address the personnel issue in the restricted sense of soft­
ware acquisition managers, not in the broad definition of "all" AFSC 
personnel needs. It is widely acknowledged, both within and outside 
the U.S. Air Force, that practitioners and managers skilled in soft­
ware are in chronically short supply. Yet the u.s. Air Force and 
AFSC must have access to such skills. Software problems directly 
relate to the lack of experienced personnel in the SPO, where criti­
cal decisions are made on software-deliverable items and design 
reviews are conducted. Management shortfalls here lead to cost 
overruns, poor system performance, or difficulties in supporting the 
system when operationally deployed. 

3.3.2 Issues 

SPO management personnel -- including the director -- are not 
sufficiently knowledgeable in software procurement practices and 
technology to adequately manage the life cycle of computer dominant 
systems. Projects reviewed by the Summer Study group and personnel 
interviewed indicated that seemingly sound decisions in software 
management are in fact often erroneous, inappropriate, or short­
sighted. 

34 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


A second major issue prevalent in u.s. Air Force organizations is 
the extreme shortage of software experts available for managing soft­
ware acquisitions. This shortage exists among both military officers 
and government civilian employees. 

A contributing factor to inadequate and improperly motivated 
software managers is the poor image reflected by Air Force management 
toward officers and government civilian employees whose expertise is 
a key factor to managing a successful software project, or failure 
typical of examples cited below. The importance of software manage­
ment skills is not uniformly reflected throughout the u.s. Air Force 
organization. 

Difficulties often arise because proprietary software products or 
tools were used by the software developer or the proper life cycle 
support tools had not been acquired by the SPO. One distinguishing 
feature that separates hardware from software is the extensive 
changes of software over the expected life cycle of the product. 
This, under ideal circumstances, requires that the Air Force procure 
not only the fielded object (software) but the design and manufactur­
ing support system that produced the software. 

The most pervasive problems of the NORAD 427-program have been 
the lack of software management and poor allocation of hardware. 
Hardware was provided because it existed on a contract and was com­
patible with other hardware, not because it was judged suitable for 
system requirements. Specifications for the communications subsystem 
were too ambitious for the technical and management environments, and 
software did not come under positive configuration control until the 
operational baseline had been achieved. This situation resulted in 
severe problems for other operational software. 

Similarly, the Joint Surveillance System program failed because 
of poor allocation of hardware and software. Visibility into the 
software development process did not exist, nor was there significant 
configuration management of software. The software developer was a 
tiered subcontractor, but the SPO had no conception of the difficulty 
involved in implementing software for its task in the system. Con­
sequently, even when made aware that problems existed, the SPO could 
not evaluate the causes. Only when the Data Systems Evaluation 
center finally reviewed the program was it understood by the u.s. Air 
Force that software had been the problem. Regrettably, this insight 
came three years too late; the project was terminated. 

In the short term, the AFSC can take little more than temporary 
measures to address the present critical personnel problem of com­
puter resource management -- a variety of small moves that collec­
tively, however, can make a significant improvement. In general, the 
approach must be to find them, train them, and ~ them to the best 

35 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


advantage, and keep them. AFSC must take the steps to identify all 
the software personnel assets that it holds, be they military 
officers, enlisted personnel, or civilian employees -- all are needed 
to staff project offices. Whether such identification takes the form 
of individual interviews, review of records for certain specialty 
codes, or some other techniques, the thrust is to identify the cadre 
of AFSC people who have the requisite software and management 
experience for SPO participation. 

Software is acknowledged to be, in a PERT sense, "in line" to IOC 
availability and maintainability of weapons systems, yet it is often 
regarded with awe, fear, and distrust. This inhibits career oppor­
tunities and makes personnel wary of being identified as software 
specialists. Particularly, it becomes evident that career opportun­
ities as a software specialist are not as promising as the other 
specialists. 

Many of the irritants that trouble officers also affect civilian 
employees and drive them to other locations in government or to 
private industry. As a result, valuable expertise is lost, partic­
ularly concerning the application domain or project history. A 
stable group of civilian employees can provide valuable institutional 
memory. 

The first imperative -- "find them" -- can be satisfied much more 
efficiently than at present. For example, AFSC holds a large popula­
tion of 28XX engineers (Developmental Engineering), many with signif­
icant software experience. Individuals in the group should be evalu­
ated as potential managers of software projects. Since the 51XX 
(Computer Systems) career field is nominally the source of computer­
trained individuals, it too should be screened for individuals having 
management skills. In either instance, supplementing the formal 
education of promising individuals via the PMC course at DSMC will 
satisfy some of AFSC's need for software managers. 

The 30XX career field (Communications and Electronics) is another 
population to be screened for management resources. Since both the 
30XX and 51XX fields are sponsored by organizations external to AFSC, 
personnel transfers might involve some negotiation. However, broad­
ened experience afforded to the persons transferred might prove bene­
ficial to the U.S. Air Force in the long run. 

Once promising individuals are found, there might be a need for 
supplemental training, especially for those at the rank of major and 
above. SPO candidates are commonly routed through the DSMC, but the 
present curriculum does not give an adequate foundation in software 
literacy. Additional computer resource training must be added to the 
curriculum for all SPO managers, as well as options for more special­
ized classes for those scheduled for assignment to project offices 
managing a software intensive effort. Material such as the Computer 

36 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Resource Acquisition course nicknamed the "Software Survival 
School" and presently taught as an AFSC unique initiative -- is 
needed on a continuing basis. Consideration should be given to 
requesting that DSMC offer such a class to DoD software-related 
personnel, military and civilian. For situations in which it might 
be inconvenient to be a student for three weeks, a tele-teaching 
class similar to the present General Acquisition Management class 
(now offered by the USAF Institute of Technology) would be appro­
priate. 

The "Software Survival School" attempts to give the student some 
idea of how computer resources are acquired and the many pitfalls 
that can appear in even the best-managed project. Computer resource 
management requires extensive management of an abstract product. SPO 
people, especially the director, must be able to comprehend discus­
sions about software and perceive the implications of decisions about 
software just as well as issues of cost or scheduling. 

Regrettably, the career and promotion opportunities in 51XX, like 
its assignments, seem unattractive to officers. It may well be that 
it suffers from the poor image of software in general, an image held 
by the u.s. Air Force civilian community as well. The u.s. Air Force 
gives its people the impression that software and computers are not 
in the mainstream of action. The situation is clearly improving as 
evidenced by the recent establishment of the Assistant Chief of 
Staff/Information Systems -- a symbol of computer resource visibility 
at the Air Staff. But there are still many subtle indicators that 
not all of the old negative signals are gone. For example, the u.s. 
Air Force Communications Command, because of its label, is thought to 
be involved primarily with communications, whereas in truth it holds 
some of the largest computer responsibilities in the U.S. Air Force. 

However well AFSC manages to marshal its software personnel or to 
enlarge the group through training, a shortage is still a likeli­
hood. Thus, it is incumbent on AFSC and its product divisions to 
utilize such personnel effectively. For example, they can be time­
shared among SPOs if no one needs a full-time resident software 
manager. Above all, their skills should not be wasted on incidental 
chores. SPO directors who have software literacy should not be 
diverted to projects that ignore their special talent. Software per­
sonnel must be seen as "scarce resources" to be carefully allocated. 
It does not follow that centralized control from AFSC is required, 
but it probably does follow that at a minimum the matter be focused 
in each product division; a Center of Expertise in each is warranted. 

Finally, the skilled software engineer must be retained. Inevit­
ably there is the "industrial pull," and there will be resignations 
and reassignments to nonsoftware jobs. This can be offset to some 
extent by assuring individuals of good assignments, by assuring 
opportunities for them to help improve and contribute to the U.S. Air 

37 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Force software community, by exploiting special bonus arrangements 
where possible, by special recognition if not special awards, and by 
demonstrating clearly at all levels of the Command that software 
specialists are respected, needed, mainstream citizens of the U.S. 
Air Force family. The highest motivational factor to a military 
officer is promotion. A clearly defined career and promotion path to 
at least 0-8 must be made available, must be utilized, and must be 
advertised to attract individuals who have demonstrated management 
ability for software projects. The prime consideration in the promo­
tion path should be performance as a software manager, not the hold­
ing of a specific u.s. Air Force Specialty Code. 

In view of the above discussion, and the fact that the various 
prefixes and suffixes to identify computer-related experience have 
evolved over many years, it is unlikely that the current specialty 
within existing career fields (e.g., 51XX, 28XX, and 30XX) will be 
appropriate to present u.s. Air Force needs for identifying officers 
with computer and, in particular, software experience. Likewise, the 
codes can probably not assure that assignments and career progres­
sions are properly managed. 

3.3.3 Recommendations 

AFSC, with the cooperation of other sponsors of specialty codes, 
should initiate a review of all specialty codes plus prefixes and 
suffixes that are used to identify individuals with computer-related 
experience. These should be restructured or new ones initiated as 
may be warranted by contemporary circumstances and the u.s. Air Force 
need for experienced computer acquisition and software managers. 

Another recommendation to retain qualified personnel in software 
management is to change the view from software management expertise 
as a career handicap to the view that this specialty, both officer 
and civilian, offers good promotional opportunities, as well as a 
highly appreciated job position. 

Specifically, the gap must be narrowed between senior SPO manage­
ment and software technical personnel by: 

• Establishing a career ladder up to management for technical 
software personnel; 

• Providing software introduction and training for management; 
• Creating in the short term a liaison to foster communication 

between management and junior technical personnel; and 
• Establishing a special software manager awareness program. 

There are other near-term actions that the AFSC can take to 
improve the effectiveness with which SPOs manage software projects. 
In particular, various oversight management techniques have been 
developed -- mostly by industrial contractors -- to monitor status 
and progress of software efforts. This visibility into contractor or 

38 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


software subcontractor organizations performing design, implementa­
tion, and testing is a critical task of the software manager. In the 
large, oversight techniques are pragmatic adaptations of schemes that 
have been used in large engineering projects. Though primitive com­
pared to the highly automated tools that one can envision, they none­
theless can give the oversight management process significant clues 
about the health of a project. 

While catalogs of tools for the software developer exist7, cor­
responding catalogs of tools and techniques for the oversight manager 
do not. The needs of the oversight manager have been little 
addressed in the literature and by the research coDDDunity. Some of 
the developer's tools can provide useful output data for oversight, 
and occasionally one will be directly useful; but for the most part, 
a SPO-level kit must contain different tools from that of the 
developer. 

To this end, it is recODDDended that AFSC institute an effort to: 

• Identify the types and details of information generally desir­
ed by and useful to the oversight manager. 

• Survey experienced oversight managers, especially in industry, 
to ascertain what types and kinds of information each has found valu­
able -- or not valuable -- for oversight management. 

• Survey past and present SPOs to determine what kinds of ques­
tions are normally asked at oversight reviews and identify the 
source(s) of data to answer them. 

• Undertake a similar effort among industrial managers as well. 
• Survey past/present SPOs and industrial software managers to 

identify tools, techniques, or tricks that each has found valuable. 
• Evaluate all such information for U.S. Air Force application 

and finally assemble it into a "toolkit" for the SPO manager. 

In addition to capitalizing on such useful schemes as may have 
been invented or adapted by SPOs or industrial managers, there is a 
major problem of infusing such knowledge into present and future SPO 
practices and into the attitudes, habits, and mind sets of the indi­
viduals who will be part of them. In the long run, enhanced training 
courses such as at DSMC, or the effect of the Software Acquisition 
Management Center (previously discussed) will make the essential 
transfer of knowledge and experience, but in the near term special 
steps will have to be taken. 

One option is a special series of lectures and presentations 
addressed to relatively small groups of people. There are probably 
industrial lecturers who could prepare such short courses. Alter­
nately, teaching staff might be found among the faculty of the DoD 
Computer Institute, the National Defense University, the Air Univer­
sity, or DSMC. In some way the AFSC will have to organize near-term 

39 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


short courses to provide the best toolkit that can be assembled from 
the wisdom, knowledge, and experience of industrial managers and U.S. 
Air Force officers. 

One example of an U.S. Air Force innovation is the project data­
base created by the Inertial Upper Stage (IUS) SPO on a small com­
puter. 8 All SPO personnel had terminal access during the project, 
but as the launch date neared, terminals were provided to the con­
tractor at his facilities and also at the launch location. In 
effect, the computerized database became the "authority" file that 
facilitated unambiguous communication, understanding, and project 
status and details among all participants. 

3.3.4 Cost/Benefit 

The additional costs for imple~enting recommendations for improv­
ed personnel training, retention, and motivation are very minimal 
compared to the direct costs for inexperienced and untrained person­
nel. One additional cost for expanded SPO management personnel at 
DSMC is estimated at $250,000 per year. Personnel training time must 
also be set aside for new personnel in transit to SPO offices. These 
costs have not been identified. 

40 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


4.0 SOFTWARE ENGINEERING TOOLS 

Software engineering disciplines will become increasingly criti­
cal to the accomplishment of u.s. Air Force missions as more com­
puters of greater complexity are utilized in u.s. Air Force systems. 
As a result, the u.s. Air Force must concern itself with the overall 
life cycle cost and quality issue for computer software, seeking sig­
nificant gains in the overall productivity while at the same time 
attaining significant increases in the delivered quality. 

Software quality, in simple and direct terms, can be measured by 
the number of defects per line of source code. While this is a crude 
measure, it is an effective and revealing one. Current software is 
produced with defect content, when measured throughout the entire 
life cycle, of some 50-70 defects per thousand lines of code, KLOC. 
There are wide variations in this figure, as might be expected. 

Productivity is measured by the average number of final product 
statements produced per programmer-day of effort. Productivity in 
this metric is currently low, lying in the range of a few tens of 
statements (lines) of newly produced code per programmer-day. 

Overall technology gain is measured by the product of productiv­
ity gains (production rate increase) combined with quality gains 
(defect rate decreases). The goal is of course to expand the "pro­
ductivity quality" product. 

The opportunity exists today to collect existing, reasonably 
mature, technology from key software engineering technology areas to 
form an intermediate software engineering environment -- a software 
toolkit -- that can "fill the gap" between what is available now and 
what will be available in several years. 

Techniques exist for keeping software engineering projects within 
pre-established productivity and/or quality limits, but not at 
acceptable costs. Less complex software may be attained with high 
productivity, but typically exhibits relatively low quality. Spe­
cialized software -- for example, that of the NASA Space Shuttle 
exhibits high quality, but was attained with very low productivity. 

Most software engineering is currently supported by some type of 
software development "environment," or toolkit, that contains spe­
cialized software tools that support the production process, (i.e., 
requirements analysis, specification preliminary design, final 
design, coding, debugging, and maintenance). The product assurance 
activities include: requirements analysis, specification analysis, 
design and code inspection, static analysis, dynamic analysis, sym­
bolic analysis, formal certification, and configuration control. 

41 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Both the production activities and product assurance activities 
are highly dependent on automated aids in the form of tools that 
support each stage of the life cycle. Although many of these tools 
exist, they are not available in a comprehensive integrated layout 
for a particular language, computer, or operating system. Therefore, 
it is often necessary to apply alternate techniques in the absense of 
an integrated toolkit. 

The productivity quality product may be increased by enhancing 
the toolkit (i.e., the integrated software engineering environment) 
used in the production and testing of the software. This environment 
requires the assembly and integration of currently existing and yet­
to-be-developed pieces. 

The known and reasonably proven methods of software engineering 
are adequate for a near-term integrated environment. However, this 
does not eliminate the necessity for substantial improvements in the 
methods themselves. Research in applications of Artificial Intelli­
gence (AI) methods could eventually lead to introduction and integra­
tion of Knowledge-Based (KB) techniques into the Software Engineering 
Environment, possibly producing a quantum increase in capability. 

If such an enhanced production environment existed, what would 
some reasonable expectations for productivity and quality improve­
ments be? 

In the "near-term," this new environment could be applied to 
selected U.S. Air Force projects with predictable beneficial 
effects. After some improvements to the environment, requiring 
several years of development, an intermediate system could find much 
wider application and could provide even greater gains. 

In the long run, fielding and using this kind of integrated soft­
ware engineering system is essential to building the engineering base 
for a KB system. 

If the U.S. Air Force acts soon and decisively, software environ­
ments can be developed that will achieve these goals. The advantages 
of a relatively short-term program to produce, distribute, and sup­
port one or more software development environments are clear. The 
risks involved are also clear. 

The opportunity exists today to take advantage of the best of 
current software engineering methods and products to construct a 
software development and maintenance environment that could greatly 
assist the u.s. Air Force in meeting the needs of its mission. 

To do this will mean constructing specialized "software tool­
kits," or Software Engineering Environments (SEEs), and making them 
available to users both inside the U.S. Air Force and in the contrac­
tor community. 

42 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The composition of a software toolkit of the kind envisioned consists 
of an integrated, consolidated collection of automated software en­
gineering tools "packaged" in a way that presents a uniform user in­
terface in four major areas: 

• Requirements Specification/Design Area. These tools help users 
establish, analyze, and codify requirements descriptions of software 
systems to be built. They also provide certain kinds of support in 
constructing high-level software designs. Technical names for these 
tools include "requirement statement analyzers" and "program design 
language" tools, among others. Several of these exist already. 
Others, currently at the advanced development stage, need only mini­
mal work to be practical. 

• Production Area. These tools support production of code from 
detailed designs. They may include tools assisting in pseudocoding, 
a precoding stage. A good production environment -- as evidenced by 
practical experience -- involves such tools as a hierarchical file 
system, interactive screen editors, modern-design compilers and 
debugging systems, electronic mail, and office-quality word 
processing software and related facilities. These features are 
included in many modern operating systems, especially those developed 
for the newest minicomputers and super-microcomputers 
(micro-mainframe machines). 

• Testing/Verification Area. Such tools address the quality ques­
tion directly, and deal with such issues as the comprehensiveness of 
tests, methods to retest systems already tested and experiencing only 
slight changes, and direct proofs of complicated logic entities. 
These tools are currently available in only fragmented forms. To 
aggregate them for chosen language/machine combinations will require 
additional work, but no significant technological breakthroughs are 
needed. 

• Management/Support Area. These tools assist in controlling, moni­
toring, and quantifying the various stages of the life cycle. They 
involve functions of scheduling and planning, tracking human activi­
ties, modeling current error rates to infer amounts of remaining 
work, as well as systems to keep precise control of a software con­
figuration. Such tools are in wide use on many computer systems but 
are not integrated well with the other kinds of tools (with the pos­
sible exception of production tools). 

All of the above must cooperate on one machine so that all of the 
facilities are within immediate grasp of a user. Many candidate 
machines exist, as do the operating systems needed to underlie the 
toolkit. Examples are: DEC's VAX with VMS, DG's MV8000 with AOS, 
and Prime's V70 with PRIMOS. 

43 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


For a SEE to be successful (able to attract and satisfy its 
users), more functional capability supporting software development is 
required than current systems have been able to deliver. Each of 
these additional functional areas must appear to the users as com­
plete in its own right. Perhaps equally important, tools in one area 
should largely "appear" the same as tools in another area to the 
user. They should present a "uniform interface," which once learned 
can be applied again. 

Requirements Tools and Methodologies 

In earlier sections a requirements definition capability for SPO 
usage was highlighted as part of a decision support system. This 
capability is geared to improving a SPO's external control over a 
project by improving milestone definition, problem statement, product 
verification, and visibility into the software development process. 

Improving a developer's internal control is also necessary for 
both u.s. Air Force in-house development and contractors. Although 
the needs of developers are similar to the SPO in some respects, 
developers also require tools that aid in actual code production. 

Well-stated requirements are a cornerstone to successful pro­
jects. Requirements that are complete, consistent, traceable, and 
testable will drastically improve quality and productivity and aid in 
avoiding the development of elegant solutions to wrong problems. 

Currently, the U.S. Air Force develops systems in the following 
way: A user will specify his needs; a system engineer will specify 
software system capabilities designed to meet user needs; a software 
engineer will specify functions to provide system capabilities; and 
eventually a programmer will code a software module that together 
with the hardware fulfills the user's need. These specifications at 
higher levels are collectively called requirements, which represent 
the recording of the staged translations of user needs to system 
capabilities. 

At any time in this process, the user may modify his recorded 
need and with it the intermediate specification to accommodate either 
a changing environment or an inadequate original need-specification. 
This necessitates flexibility in the system design, which is present­
ly provided by modifying the lowest level code without the accompany­
ing use of tools to assist in documenting updates to intermediate 
specifications. Software is often the chosen method of system im­
plementation because it theoretically provides this flexibility. 
Experience has shown, however, that without requirements tools, soft­
ware often provides only the illusion of flexibility. It only 
appears to be ~asy to change a line of code. 

44 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


This situation points out the need for three types of require­
ments tools: 

1. Tools oriented to assist the user in specifying needs in 
order to minimize post delivery system modifications. 

2. Tools oriented to assist the developers in translating the 
user needs into system and software products, specifically 
the following: actual system capabilities, system specifi­
cation, functional specifications, software specifications, 
software design, and finally, programs capable of operating 
on an embedded computer. 

3. Tools oriented to trace and assess the impact of the chang­
ing need on the system as well as the impact of system lim­
itations on user-needed capabilities. 

Before the actual incorporation of tools, there should exist a 
methodology to specify user need and system capability. This meth­
odology should foster completeness of specifications and consistency 
in language. 

Requirement tools should be built to support this methodology by 
(1) assisting in the specification of interfaces (user to developer 
hardware to software, software to software), (2) requirements trace­
ability through intermediate software life cycle products, and (3) 
language consistency checking. These tools should be further devel­
oped to assist the user and developer without negatively affecting 
productivity. 

For the near-term, existing requirements tools should be selected 
to support projects with near-compatible methodologies and their 
front ends should be human-engineered to improve user and developer, 
acceptance. Their acceptance and effectiveness in the development 
environment should be studied and evaluated. 

For the mid-to-long term, a general study on requirements method­
ologies specification languages should be established and integrated 
in at least four different u.s. Air Force development environments 
(e.g., avionics, satellite systems, management systems, and support 
systems). Their effectiveness should be examined and knowledge of 
these results should be used for tool enhancement, support and fur­
ther dissemination throughout the u.s. Air Force. 

Verification and Testing Tools 

Software reliability is a crucial element in u.s. Air Force sys­
tems. In order to provide increased flexibility and capability, the 
u.s. Air Force is turning to software in virtually every major sys­
tem. Current systems use software to affect communication, for 
tracking in radar systems, for weapons control, target acquisition, 
etc. The Space Shuttle is flown mainly by software and soon such is 

45 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


expected with advanced fighter aircraft. Program errors in these 
systems could mean missed engagement opportunities, improper aircraft 
identification, lost equipment (as with satellites), and even loss of 
life (in aircraft software failure). 

Current practices in verification and testing provide no assur­
ances as to the quality of the software. Even the Space Shuttle pro­
gram, at a code production cost of over $3,000 per line of code, 
failed to provide error-free operation. SAC's 465L system, after 
operation for 12 years, averaged one failure per day attributable to 
software.9 

Existing and advanced prototype software testing tools can suc­
cessfully be integrated into an initial near-term software environ­
ment and can be considerably enhanced thereafter for 200-400 percent 
gains in quality productivity. Existing verification tools can be 
applied to selected modules with useful benefit. 

Even though the technology, and in some cases the implementation, 
is known, test and verification tools are rarely applied in the soft­
ware life cycle, with a resultant impact on software quality. Test 
tools attempt to identify defects after software production through a 
process of systematically characterizing the behavior to a measured 
degree of thoroughness. Verification tools show the mathematical 
consistency between a formal or semi-formal specification and the 
actual implemented code. 

Some of the deficiencies known to exist are the following: 

• Test planning is not coordinated with stated requirements; 
• Test completeness criteria are not specified; 
• Test plans, procedures, and results are not achieved; 
• Verification is not often considered for critical software 

units; and 
• Integration testing support tools need to be developed. 

Most of these methods have known technical solutions, and in many 
cases prototype tools have been built to demonstrate the viability of 
the solutions. However, due to the relatively high cost and incon­
venience of current implementations, these tools and techniques are 
not as widely used as they should be. 

Verification technology, on the other hand, appears to be only 
barely applicable to practical problems, and only then in restricted 
circumstances. The payoff in terms of quality for formal verifica­
tion, however, makes it imperative as a method for selected (criti­
cal) software units (modules). 

In the near term, the recommendation is to implement versions of 
tools based on known techniques for test case design and test data 
generation to support functional and structural testing. 

46 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Some of the specific features that should be considered are the 
following: 

• Cause effect graphing for specification-based testing. This 
technique, shown to be useful in practice for relatively smaller 
examples (upwards of 75 causes + effects) will organize specifica­
tions and also systematize the generation of test data. 

• Structural coverage analysis for completeness assessment. 
Such "test coverage" tools abound for most languages, and await only 
centralized installation and checkout. 

• Assessment of reliability of test data. This kind of analysis 
would indicate whether test data actually used was "reliable." 

• Test file generators. Given the format of input files, this 
tool would generate sample files matching the format and containing 
user-selected values, possibly chosen at random. 

• Interface testing completeness measures. Currently, interface 
testing is done in an ad hoc manner. The formalization of counting 
of variables exercised and values passed would considerably enhance 
the development of more reliable software. 

In addition to this high-confidence work, there should be a pro­
gram that begins immediate development of simple technical systems to 
address less-well-understood problem areas such as: 

• Integrated support tools. These tools would assist in the 
complicated multi-component integration process. 

• Automatic test harness systems. These tools generate the test 
environment for a subsystem or an individual component (i.e., for an 
entry point). 

• System testing tools. Such tools would provide services at 
the system level similar to those which are now available in proto­
type form at the unit level only. Simulation facilities would be 
included at system level as they are in the unit level. 

• Test-case archiving and regression systems. In this case, the 
problem is to store, compare, retrieve, and otherwise manage volumes 
of test ouput data generated under automated control. It is likely 
that a backing store will be needed, due to the overall volume, and 
so the possibility of use in a batch (background) environment should 
be investigated. 

Finally, the careful use of verification methods should be con­
sidered for some "experimental" situations in which the software sys­
tem to which the technique is applied is deemed critical enough to 
justify the extra care and attention paid to quality. 

To meet the requirements of the intermediate-term "toolkit" it 
will be necessary to handle problems of dissemination, support, 
assembly, and distribution of the toolkit's testing and verification 
components. 

47 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The first step is to obtain appropriate suites of test tools, 
with user documentation, for widely used HOLs and integrate them 
within the near-term toolkit. This will also require training 
courses for specialized tools. 

Consideration should also be given to experimental use of verifi­
cation for critical modules, as described above. 

These recommendations should result in an immediate increase in 
short-term quality of systems (25-50 percent defect reduction) and 
reduced effort in retesting (or capability to do this work that is 
now done). The overall risk for these recommendations is low. Many 
of the types of test tools mentioned above already exist and are in 
the U.S. Air Force or government inventory. Other test tools are 
ready for commercial use (with minor restrictions on host environ­
ment). 

Tools to Maintain Operational Systems 

It is evident that as software systems become larger and more 
complex, logistics and support organizations charged with the respon­
sibility of maintaining and upgrading systems will require expanded 
capabilities. In addition to detecting and correcting software 
faults, these support organizations must respond quickly to user 
problems, maintain configuration control, and manage product improve­
ments. 

Advanced research into the 
necessary if the u.s. Air Force 
increasing software inventory. 
the magnitude of the task will 
support. 

areas of maintenance and support is 
is to maintain control of the ever­
Limitations in skilled personnel and 
require moves toward automated tool 

Maintenance is a difficult proposition. The existing software 
inventory contains code developed by nonuniform methods. Differences 
in documentation style, implementing languages, and machines are 
prevalent. Operational life of u.s. Air Force systems can be in 
excess of 20 years. Therefore, the corresponding software must be 
frequently changed, corrected, and enhanced. Conservative estimates 
show that over 60 percent of costs in the life of software is in 
maintenance and support. 

Existing software can be classified as: 

1. Well documented, using specifications and modern software method­
ologies with formal requirements and designs and test/plan cases. 

2. Poorly documented, did not use modern software methodologies. 
The documents are incomplete, ambiguous or out of date. 

48 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


For ( 1), software development tools should be available. Since 
modification to the system should proceed from the top down, it 
should start by analyzing the system requirements as well as propos­
als for modification, then analyze the specification and design 
before actually changing the codes. The usual development tools, 
such as requirement analysis tools, specification tools, design tools 
and testing tools, are all useful for maintenance work. Thus, with 
the availability of the software development tools as well as formal 
specification of the system the task of maintenance will be easier. 

For (2), one needs to decide if the affected part is worth modi­
fying or if a new version should be developed using the development 
tools. If the affected portion is modifiable, then the extent and 
nature of the changes must be specified. Tools most effective here 
are specification and documentation generation tools. These tools 
should aid in reconstructing the requirements and specifications from 
the implemented code. Since the current state-of-the-art technology 
is rather weak, new research is required. 

Costs for this activity are estimated to be $1 million. Benefits 
include better-documented and maintained software, less system down 
time and a greater product enhancement capability for supporting 
organizations at minimal risk. 

Tools for Human Factors Enhancements 

Tools that minimize the "technology shock" of incorporating new 
tools and techniques into the software life cycle are needed. These 
tools can effectively fit into the user ' s everyday routine by careful 
consideration of the human factors and the user's requirements. 

Careful consideration of the user's environment is essential to 
successful technology transfer. Well-engineered tools and environ­
ments improve user productivity, reduce time spent in the learning 
curve, and meet with less resistance of acceptance into the user com­
munity. 

The lack of human factor considerations in the development of 
automated tools for use in the development, management, and mainte­
nance of embedded software systems is a problem because tools that 
are difficult to use are either used ineffectively or not at all. 

The majority of the automated tools in use today in the software 
community must be operated by highly skilled software technicians 
using standard keyboards and CRTs as the primary interface to the 
computer. 

49 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


As software development management and maintenance tools become 
more sophisticated, the ability of the humans to use these tools 
effectively must be enhanced. The tools must be usable by humans 
with management skills, systems skills, testing skills, and mainte­
nance skills. These individuals should not be required to have 
detailed software skills in order to use the tools; therefore, the 
human interface to these tools must be significantly improved. 

In the near term, standardized methodologies and tool kits using 
existing software tools have been recotmDended. The human interface 
to the tools in the toolkits should be improved to simplify their 
use. Currently there are several tools in the market place that are 
designed to be used during the requirement phase of the software life 
cycle. Existing requirements tools as well as test tools are diffi­
cult to use. Once the requirement and testing tools have been 
selected for the near-term (one-four years) toolkits, a program 
should be initiated to improve the ability for humans (users) to 
interface and work with the requirements and test tools. Improvement 
of the human interface to the design and development tools is not 
recommended in the near term, because these tools are currently being 
used by software specialists who have learned to employ them effec­
tively. 

In the intermediate term, integrated software development, man­
agement, and maintenance environments have been recommended. The 
environments consist of tools in a local area network environment, 
including management, development, and clerical work stations con­
nected to file servers, target computers, and environmental simula­
tors as defined. 

Human factor considerations must become an initial part of the 
integrated software tools environment. The specifications must 
include human factors requirements, and a man-machine interface 
design document that provides detailed design requirements for human 
interactions should be developed and maintained throughout the life 
of the tool environment. Demonstrations of the completed tools 
environment must clearly show that the system is easy to use. 

These systems must employ easy-to-use graphics, color, summary 
reports, forms completion, etc., to accomplish the simplified user 
interface. 

In the near term, contracts should be awarded for the improvement 
of human interface to selected specification and test tools in the 
toolkits. 

For the integrated software management and development environ­
ment which will be implemented in this intermediate term, the human 
factor consideration must be an initial part of the requirements, 

50 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


specification, and design. Considerations for the human factor ele­
ment must be included in the Request for Proposal (RFP) and must be 
part of the requirements for the system. 

Implementation for improving human factors would add 25 percent 
to tool environment development costs. The potential benefit is an 
improved productivity of 50-100 percent over systems without a good, 
simplified human interface, at moderate risk. 

Tools for Special Software Systems 

Software development tools and software engineering environments 
are currently designed to provide great generality and wide applic­
ability. However, when these tools and environments are applied to 
specific systems, there may be inefficiency and difficulty in carry­
ing out the implementation. Indeed, the initial cost of adapting 
general tools and environments to a specific application constitutes 
a significant barrier to their use. 

Specialized tools can drastically improve software productivity 
by meeting the particular requirements of u.s. Air Force systems. A 
careful balance must be maintained between specialization and gener­
alization to minimize the number of special tools, and thus their 
cost, and good coverage of u.s. Air Force needs. 

There are many characteristics of specific systems that make it 
difficult to apply generalized tools and environments. One charac­
teristic is the applications software itself. Clearly, there are 
great differences in the nature of and requirements for algorithms in 
intelligence-gathering systems, onboard avionics systems, and inte­
grated logistics systems. Another characteristic is the major func­
tion of the system; again, a system whose major function is the stor­
age and retrieval of large amounts of data will differ considerably 
from a real-time guidance and control system. 

Most current tools and environments are oriented toward a single 
embedded computer; however, it is clear that many future u.s. Air 
Force systems will utilize distributed computer networks, highly par­
allel machines, and other advanced architectures. Still another area 
is the level of security of the system. Multi-level secure software 
command systems, where trustworthiness of the outputs is paramount, 
present particularly difficult challenges. Finally, even the pro­
gramming language may be an important factor; tools and environments 
that efficiently support a procedural language like Ada may be sig­
nificantly different from those for a functional language like LISP. 
Obviously, any specific u.s. Air Force system will encompass a par­
ticular combination of these and other characteristics, and it is to 
be expected that the adaptation of generalized tools and environments 
will encounter difficulties and inefficiencies. 

51 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The above discussion highlights an important dilemma in the 
development of software tools and environments. On the one hand, if 
the tools and environments are made completely general, there will be 
inefficiencies and difficulties in application to a specific system. 
On the other hand, if the tools and environments are specialized to 
each individual system, the costs of developing and maintaining an 
ever-proliferating set of tools and environments will become prohibi­
tive. The best compromise probably lies between these extremes. The 
Summer Study group recommended a three-part program to resolve this 
issue. 

The first part of the program is an ongoing study of the feasi­
bility of developing specialized tools and/or environments for spe­
cific classes of systems. One aspect of the study would be periodic 
surveys of U.S. Air Force system developers, users, and contractors 
to ascertain the perceived need for such specialized tools and envi­
ronments. The other aspect would stress theoretical studies on the 
state-of-the-art and state-of-the-practice of tools and environ­
ments. The goal of the study would be to examine specific candidate 
areas for the development of specialized tools and environments, to 
estimate the cost-effectiveness of such development efforts, and to 
specify the requirements for incremental development in those cases 
where the cost-effectiveness justification is strong. 

The second part of the program would fund the incremental devel­
opment efforts for those systems where cost-effectiveness justifica­
tion is high and where other conditions for the incremental develop­
ment work are favorable. There are several reasons why this develop­
ment work should be supported by a central U.S. Air Force organiza­
tion rather than by the SPO for the individual system. In the first 
place, the specialized tools and/or environment will apply to several 
of the systems, and it is not equitable for the first project to pay 
all the costs. In the second place, unless a central organization 
controls the work, the resulting product will be tailored only to the 
first system and will not be transportable to other systems of the 
same class. Finally, by centrally funding the incremental develop­
ment work, it is far easier to control the documentation of the work 
and to ensure that it will be supported and maintained to benefit 
future systems. 

The third part of the program is concerned with the maintenance 
and support of the specialized environment and the transportability 
to appropriate systems of the same class as the original system. 
This support will be critical in acceptance of these specialized 
tools by other system developers, users, and contractors. 

It is interesting to note that the concept of specialized envi­
ronments is compatible with the notion of knowledge-based systems. 
In fact, the way in which the tools and/or environments are special­
ized provide important clues as to which system characteristics and 

52 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


data are important to maintain in the knowledge base. As will be 
noted later, knowledge-based systems is probably the most promising 
single technology for providing a breakthrough in software tools and 
environments area. It follows, then, that the work on specialized 
environments is an important contributor to the long-range introduc­
tion of knowledge based systems into this field. 

The three-part program should continue for at least the next 
seven years. The ongoing surveys and studies will require between 
$300,000 and $500,000 per year, with a total investment of approxi­
mately $3 million. The incremental development cost will vary con­
siderably from system to system. The average incremental development 
cost is about $2 million. Finally, the support of such systems will 
cost approximately $500,000 per year per system. If three systems 
are introduced more or less uniformly over the next seven years, the 
total support cost would amount to about $6 million. The total cost, 
then, for the ongoing studies, the incremental development for three 
systems, and the support for these systems is approximately $15 
million. 

The benefits for these efforts are difficult to quantify. How­
ever, because the ongoing study will allow the U.S. Air Force to 
choose carefully the systems on which to apply this approach, it is 
expected that the benefits will be considerable. In some cases, the 
use of specialized tools and environments will make the difference 
between success and failure of the system. Certainly, the ability of 
the U.S. Air Force to make timely application of new advances in 
hardware, architecture, and languages will depend greatly on provid­
ing efficient tools and environments for these technologies. In­
creases 1n software development productivity by 200-500 percent for 
systems where the specialized tools and environments apply are to be 
expected. 

By carefully controlling the areas in which specialized tools and 
environments are applied, the proliferation of tools and environments 
can be controlled. The resulting cost savings to the U.S. Air Force 
could amount to $100 million over the seven-year period. 

The risk of the approach is controllable because of the informa­
tion developed in the ongoing study. Only high-payoff, low-risk pro­
jects, where the resulting incremental development work can be 
applied to numerous other U.S. Air Force systems, will be undertaken. 

4.1 Requirements for Near- to Far-Term Environments 

4.1.1 Requirements for a Near-Term Environment 

Tools exist to comprise the needed software toolkit, but are 
essentially unavailable (for a variety of reasons, only some of which 
are technical) to U.S. Air Force labs and projects. Strong and 
effective leadership will be required to resolve the nontechnical 
problems. 

53 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The technical problems are definable and hence achievable though 
possibly requiring some compromise. Two particularly important areas 
needing emphasis for the nearterm are: 

• Requirements Analysis Tools • which are not as easy to use as 
they should and could be. They need better human interfaces and more 
automated output forms. The principles of requirements analysis 
tools are well known, but the practice needs to be improved. Defi­
ciencies exist in clarifying design interfaces, supporting test case 
generation from specifications • handling performance questions • and 
making incremental changes to requirements statements. Refinements 
to existing specifications tools, combined with enhancements targeted 
for the "intermediate" generation, should be adequate to meet the 
needs defined earlier. 

• Program Analysis Tools • which are not used as much as they 
could be in the operational (maintenance) phases. Better improved 
end-user designs and better education in each tool's use will aid 
this problem. Tools for static analysis, coverage analysis, and test 
data or test file generation are available. Less available -- but 
not unknown -- are system testbeds, regression analysis systems, and 
formal verification tools. 

A preliminary SEE must be developed by joining existing operating 
systems, commercially obtained software tools, and minimal but essen­
tial augmentations of the user interfaces. 

With little technical risk, provided some problem areas are 
addressed quickly and effectively, it should be possible to build an 
integrated tool environment that has some very attractive capabili­
ties. This could be done well in advance of commercial developments 
and could, in fact, lead commercial developments in many ways. The 
environment could achieve wide U.S. Air Force and u.s. Air Force con­
tractor use, at least for the two-four year period until commercial 
versions "catch up." 

Productivity gains of 25-50 percent should be immediately appar­
ent; and, quality gains of 50 percent or more should be easy to 
achieve. While not order of magnitude, these are far from minor 
improvements. The combined effect would probably be a fourfold 
increase in the productivity quality product. 

4.1.2 Requirements for an Intermediate-Term Environment 

Once the initial near-term software engineering environment is 
assembled, immediate improvements must be undertaken to ensure user 
interest and longevity. Perhaps more important, the U.S. Air Force 
will probably have to bear the burden of control and distribution. 

54 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Improvements to the near-term SEE that will enable the next 
levels of productivity quality gain include: 

• Organization of the system into "workstations" that co111DUni­
cate with each other. 

• Creation of a unifo.rm interface language that standardizes the 
language as seen by the user, e.g., a shell in Unix. 

• Addition of special-purpose tools to aid in handling some of 
the more specialized problem areas, particularly to support opera­
tional systems. 

Such an intermediate SEE would provide for collections of work­
stations at which software development, project communications, and 
most of the heavy clerical burden of software development would be 
undertaken. Attractive as it may be, a local area network is unne­
cessary for this task, but should be considered as an alternative. 

There are many ways users can perceive a system as easy to use, 
and a number of facilities may soon be found to be essential in daily 
operations. Reliable machine-to-machine and intra-machine person-to­
person electronic mail is an example that could be a most important 
feature. 

Next in importance is the program that the user interacts with 
most in commanding subsystems. This is crucially important because 
minor variances and capabilities make enormous differences in pro­
ductivity and user satisfaction. Therefore, care must be taken to 
assure existence of a high-quality interface. 

Once a suitable initial SEE exists, re-hosting relevant tools 
should be a straightforward task. Problems with licensing and royal­
ties would need resolution, but if commercial use fees and charge 
patterns can prevail, the short-term costs to the U.S. Air Force are 
quite manageable. 

Use of the environment and its payload of tools requires that 
users have it available nearly all the time as the "standard" inter­
face on machines. This means that the SEE must be distributed and 
well supported without delay. 

Finally, recognizing that the SEE is a complex software package 
as prone to defect as any software system, provisions must be made to 
handle incremental modification and redistribution. Commercial pat­
terns exist that would allow this task to be contracted. 

Special attention was given by the Summer Study group to the 
problems of operational support of existing software. Currently, 
software in the field is maintained with a wide range of tools and 
techniques, some much more effective than others. Frequent changes, 

55 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


corrections, and enhancements, each small but adding up to a high 
volume of modification, characterize the practice in the operating 
commands. 

Both the lifetime and the invested value in current operational 
software dictate special care -- and special support provisions by 
the SEE. 

After initial operating SEEs are available, it should be possible 
to directly target a number of specialized tools to the problems of 
field maintenance. Such tools would provide previously unavailable 
program analysis, modification control, configuration definition, 
record keeping, and archival capabilities. Moreover, these needed 
functions would be available in a SEE context that should be expected 
not to change radically. 

Currently available tools that are candidates for the SEE toolkit 
suffer most from specialist mentality. That is, they are designed by 
specialists and thus usually intended to be used by the same people. 
This implies a critical need for the enhancement of human factors. 
The result is highly capable tools that are inaccessible to users 
without special training. 

Efficient interfaces allow the adoption of fairly proven tools 
without excessive learning burdens. Techniques using menus and com­
mand prompting are highly effective for this. It is important, how­
ever, to listen to users' complaints and respond to the problems that 
system designers might not necessarily notice. This suggests that 
the users work as a kind of user group to generate the necessary 
feedback. 

Some specialized system areas need particular emphasis and cer­
tain kinds of more specialized tools. Applications areas included 
here are c3r, avionics, and logistics. The needs are for database 
systems, security features, and certain kinds of networking. 

As before, most of this capability is available but is not inte­
grated in an environment. The special criticality of these missions 
can both test the SEE and contribute to it. 

The intermediate term payoff for a well-engineered and effec­
tively distributed SEE is substantial: 

• An order of magnitude (a factor of 10) increase in final­
product quality exhibited as significantly reduced error content; and 

• A factor of two to four increase in programmer productivity 
over 1983 figures. 

56 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


4.1.3 Requirements for a Far-Term Environment 

In the long run, it seems clear that the Knowledge-Based (KB) 
system approach will be effectively applied to just the production of 
other software systems. A KB system for software production would 
collect sets of software engineering rules and integrate them in an 
environment that would permit application of the rules to embryo 
software systems. 

One can imagine this done to the full range of needed disci­
plines, from requirements analysis and specification through design 
and coding, including verification and validation steps. The reduc­
tion in labor costs through high levels of intelligent automation of 
function is an attractive incentive. 

The key to minimizing disruption as the intermediate term meshes 
with the future is to lay the groundwork now for the transition. 
Early KB systems can be built from rules based on experience gained 
from the measurement and feedback processes built into the near-term 
and intermediate SEE. 

Specific methodologies can be compared, and the essential and 
effective elements of each can be incorporated in the KB systems that 
are built. In fact, it seems likely that some of the intermediate 
SEEs would provide the proof of principle basis for KB systems. 

Most important, the structures set up for control and distribu­
tion of the SEEs would serve to assure that only mature technology 
would be accepted in any KB system. 

The key to maximizing benefits in the AI/KB area is to control 
technical risk by managing the long-term evolutionary growth. This 
means that the near-term SEE must be used as the basis for experi­
ments and activities that assure collecting the most useful type of 
knowledge base. Early feasibility demonstrations, which would be 
part of the regular program of development, would help accomplish 
this. Special data collection experiments and other rule- and 
data-gathering efforts could be made part of the R&D effort. 

Overall, modest investments in the present will be of enormous 
value in the long run in developing systems. 

4.1.4 Summary of Actions for Phased Environment 

The previous sections have outlined a strategy for possible U.S. 
Air Force technical development aimed at the simultaneous goals of: 

• Rapid development of near-term software engineering environ­
ment support systems; 

• Growth of this system into an effective intermediate system; 

57 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


• Assuring inter-operability with prospective knowledge-based 
implementations. 

To take advantage of the opportunity that now exists and to meet 
these goals will require leadership and action. 

Near-Term Actions 

• A task group should be commissioned to determine the means for 
accomplishing the near-term tasks and to lay the foundation for the 
intermediate term. 

• Existing and working software tools could be collected in uni­
form Software Engineering Environments (SEEs), and a standard method­
ology for the SEEs' application and use should be defined. 

• The human interface for the SEEs has to be enhanced to mini­
mize system interference while meeting defined quality and productiv­
ity goals. 

Intermediate-Term Improvements 

• Based on initial results with the SEEs, the "standard method­
ology" can be refined and redistributed to a wider U.S. Air Force 
user community. 

• The SEE can be adapted to smaller computers, e.g., engineering 
workstations, as a means to further propogate the capability at 
lowered cost. 

• Human factors for the SEE -- at both the lower level of direct 
interface style and the higher level of interface to subsystems of 
specialized nature -- should be enhanced and refined. 

• Provisions for SEE system maintenance and upgrade should be 
built, and rapid and effective feedback capability should be intro­
duced. 

• Special features aimed at supporting operational maintenance 
should be developed and refined. 

• Assessments of effectiveness in a set of controlled experi­
ments and demonstrations should be made. 

Research for Future Environments 

Without question, application of AI techniques to software 
engineering support systems should be supported, and the knowledge 
base necessary for a KB system should be accumulated. 

Research aimed at matching prototype KB systems with advanced 
versions of the SEEs should be performed. This may result in pilot 
systems ready for the 1990s. 

58 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


4.2 Recommendations 

In order to verify that the integrated environments accomplish 
their intended requirements, demonstrations on actual pilot projects 
must be performed. The tool environments which meet the objectives 
of the demonstration should be supported by the U.S. Air Force and 
provided as Government Furnished Equipment (GFE) to contractors on 
projects which include development of embedded software. These 
environments should also be maintained and used throughout the life 
cycle of each system by the government or industry agency responsible 
for maintaining and enhancing the system. 

Each contractor selected by the U.S. Air Force to develop soft­
ware tool environment systems should also select a minimum of three 
pilot projects upon which the demonstrations will be performed. The 
selected projects should meet the requirements stated above. The 
contractors and u.s. Air Force should coordinate and reach agreement 
on the selected pilot projects. Once the pilot projects have been 
selected, the impact of the demonstrations upon the cost and schedule 
of the pilot projects should be determined. This impact should be 
accounted for by both the contractor personnel and the U.S. Air Force 
as part of the system tool environment contract. Demonstrations 
should be performed by contractor personnel in accordance with the 
test plan agreed upon by the contractor and the U.S. Air Force. 

A total of three tool environments should be built. Each envi­
ronment should be used to develop, manage, and maintain the software 
on a minimum of three pilot projects: ( 1) a large project with an 
application such as c2, c3, or c3I; (2) a medium-size project 
such as navigation or flight control system of a missile; and (3) a 
medium-to-small ground support system such as an automatic test set 
for a weapon system. 

In order to demonstrate these environments on three different 
pilot projects, it is necessary that the companies that build the 
environments be in the business of building weapon systems for the 
U.S. Air Force. This is important, since the demonstrations must be 
performed on pilot projects being developed by the same company that 
is developing the integrated tool environment. 

The demonstration will confirm that each tool environment meets 
all of the requirements specified in the tool environment specifica­
tion. If a tool environment fails to satisfy the requirements, it 
should not be selected by the u.s. Air Force for full-scale deploy­
ment and support. 

4.2.1 Demonstrate Integrated Environments 

Demonstration of the Software Engineering Environments is the 
first step in ensuring their usage. Introduction of new technology 

59 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


often meets with resistance, both from within the U.S. Air Force and 
by developers. It is rarely the case that a tool itself will be suf­
ficient to change the methodology of a software development communi­
ty. Demonstrations should be effective in allaying developer's fears 
by showing that the environments meet performance objectives. 

As previously mentioned, it is proposed that a minimum of three 
integrated tool environments be built for the development, management, 
and maintenance of embedded software. Each of these tool environ­
ments must be subjected to a specified verification process to con­
firm that they satisfy their objectives for all intended applica­
tions. The primary objectives for these environments will be to im­
prove the quality and decrease the cost to the delivered mission 
software. Several sub-objectives of the tools environments must also 
be verified. These include a simplistic human interface, room to 
expand the tools environment as new tools are developed, ease in 
maintenance of the tools environment, ability to support large, 
medium, and small projects with different applications such as C3I, 
space stations, ground support systems, missile systems, automatic 
test systems, trainees, and simulators. 

4.2.2 Ensure Developer Use 

Although demonstrations of the software engineering environments 
will help, it is doubtful that full utilization by developers will 
occur without other efforts. Developers and U.S. Air Force support 
organizations must be encouraged to utilize toolkits. An organiza­
tion's resistance to such toolkits might be based on: 

1. A substantial commitment to their own tool set and/or 
methodology; 

2. Lack of appreciation of the life cycle cost-effectiveness of 
the proposed toolkits; 

3. The learning curve required with the introduction of new 
toolkit technology; 

4. Fear of change; or 
5. Unknown impact on precise cost and schedule of toolkit 

introduction on development. 

The issues above represent an open problem requiring further 
examination. It is recommended that the U.S. Air Force charter an 
organization(s) to examine the available alternatives: 

1. Offer a GFE toolkit. 
2. Set U.S. Air Force requirements as to minimal automated life 

cycle support (list of acceptable tools). Developers would then have 
the option of using a GFE toolkit or their own, provided it met with 
the requirements. 

3. Provide a weighted award process whereby contractors using 
approved tools score higher than those that do not. 

60 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


4. Jointly define toolkit composition with users, developers, 
and researchers. 

5. Specify as delivery requirements the form of software pro­
ducts (i.e. formalized requirements document compatible with U.S. Air 
Force support organization tools). 

Costs of the study are negligible (about $0.5 million). How­
ever, costs of implementing their recommendations have not been 
determined. The DoD STARs program is currently investigating how to 
implement Ada environments. The results of these efforts merit 
further examination. 

4.2.3 Maintain and Support SEEs 

Once toolkits and tool networks are put into operation on pilot 
projects and throughout their rema1n1ng life cycle, users will 
uncover shortcomings, operational requirements will dictate changes, 
and the systems must be maintained. In addition, users must be 
trained to operate and use the systems effectively. 

Environments acquired from a variety of vendors must be main­
tained, have technical support, training support, and adequate con­
figuration management. No single organization may have the expertise 
required to maintain the toolkits (including the vendors). For that 
matter, no support may be available at all for some tools, particu­
larly if the tools are research environment products. Likewise, user 
support and training may be impaired. Finally, changes must be con­
trolled to prevent entropy of toolkit configurations. 

It is the recommendation of this committee that the U.S. Air 
Force set up a single internal organization responsible for support 
and training for the embedded software toolkits and integrated envi­
ronments. It is likely that this organization will initially subcon­
tract the major portion of this work to the contractors who developed 
the system; however, it is recommended that the U.S. Air Force grad­
ually move into a strong role in this area. 

This organization should be responsible for the following as a 
minimum: 

• Rapid response to user needs, both within the U.S. Air Force 
and to contractors using the toolkits; 

• Operation of the computer program library for ( 1) configura­
tion control of software tools, (2) configuration control of reusable 
software design modules, and (3) distribution of tools, design 
modules, and documentation; 

• Maintenance of system hardware/firmware; 
• Releases and configuration control of versions of tools; 
• Definition and implementation of major changes (enhancements); 
• Re-hosting and reconfiguration as required; and 
• Training and technical consultation. 

61 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The cost of maintenance and support of the toolkits over a two­
year period is estimated at SlO million. The cost of maintaining the 
integrated networks which replace the near-term toolkits after four 
years is estimated at S20 million between year four and year seven. 
Maintenance and support costs beyond the seventh year have not been 
determined. 

The benefits of maintenance and support for these tool systems, 
including the training, are fairly straightforward. As in any system 
deployed for full-scale operation, the maintenance and training must 
be provided over the entire operational life span in order for the 
system to remain effective. 

This is a low-risk item with no new technology required to sup­
port the task. 

4.2.4 Acquire Near-Term Toolkit 

Near-term toolkits comprised largely of off-the-shelf components 
have been recommended. Composition and acquisition issues of the 
toolkits must be resolved prior to U.S. Air Force deployment. 

Related to acquisition are several obstacles blocking the compo­
sition of the toolkits. The plethora of tools, methodologies, and 
host machines must be examined to find the most complete, effective, 
and usable tool kit. Evaluation criteria must be established and 
reporting procedures defined. A tool must be well engineered with 
human factors in mind. The tools should also aid developers on other 
commercial applications. Applicability and use of tools on commer­
cial development activities assure that tools are providing desired 
results. Gaps in life cycle coverage, interface difficulties, meth­
odology incompatibility, etc., make the determination of toolkit com­
position difficult. Further difficulties arise in that some tools 
are not widely disseminated or are products of a research environ­
ment. This requires refinement, improved documentation, and some 
modifications to make them production quality. Toolkit composition 
is further impaired by the proprietary nature of some of the avail­
able tools. Tools required by the U.S. Air Force must be in the pub­
lic domain. This involves adequate compensation for tool developers 
and a range of complex legal issues. 

The U.S. Air Force should charter a task force to define toolkit 
composition and provide an outline of an implementation plan detail­
ing the required improvements in tools and hardware constraints. The 
task force should rate the tools for applicability to the U.S. Air 
Force situation and be comprised of representatives from industry, 
university research communities, and U.S. Air Force projects. 

62 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


At a cost of $55 million over a four-year period, initial 
software toolkits should be produced (and their associated 
methodologies delineated) for U.S. Air Force-supported distribution 
to effect a 35-50 percent increase in productivity quality, with very 
low risk. 

There are sufficient software tool alternatives operating on 
selected host computers to support immediate creation of 3-5 U.S. Air 
Force software production toolkits, provided that they are augmented 
in the requirements analysis/traceability and software quality man­
agement (program analysis) areas. 

4.2.5 Acquire Intermediate-Term Networks 

Improvements to the near-term toolkits should be fielded in the 
four-six year time frame. Improvements will be based on continuing 
evaluations of tool effectiveness, development of unifying methodol­
ogies enabling tools to interface with one another, and overall 
improvements. 

Developing integrated networks requires expertise in all aspects 
of the software life cycle. Expertise in requirements statement, 
verification, and testing, along with expertise in specific U.S. Air 
Force systems and advanced human interface techniques, may be lacking 
in most potential tool developers. 

Those organizations with the capabilities may be reluctant to 
share this expertise insofar as this could result in improved produc­
tivity of competitors. 

The issues above represent an open problem requ1r1ng further 
study. Two alternatives are offered, however. The recommendation of 
this committee is that multi-contracts (three or more) be awarded to 
large system houses that are currently producing embedded computer 
systems for the U.S. Air Force. Each of these contracts should in­
clude provisions for both near-term toolkits and intermediate-term 
integrated networks of workstations, file servers, target computers, 
and environmental simulation. 

The cost of these integrated environments is estimated at $44 
million for the development of three networked systems. A jointly 
funded consortium approach could reduce this figure considerably. 
Demonstrations, system support, dissemination, and training are not 
included in this estimate. 

Parallel development or joint development by consortium m1n1m1zes 
risk by reducing corporate bids, maximizing commercial utility, and 
providing the best available environment. 

63 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


4.2.6 Integrate Tools Across Life Cycle 

As we enter the intermediate term (years four-six), it will 
become necessary to integrate the tools to form standard, integrated 
tool sets (environments) that span the entire life cycle. In order 
to have these tool environments available in four years, the work 
must begin immediately. The integrated networks should have (1) 
software engineering development tools, (2) management tools, and (3) 
office and administration tools. Typical environments will contain a 
network of development workstations, management workstations, cleri­
cal workstations, file server(s), environmental simulators, target 
computers, and related tools. 

Integration may be difficult, since a comprehensive environment 
for improved software quality and life cycle costs affects virtually 
all levels and organizations involved with software development and 
support. 

Each workstation will have specialized tools as well as general 
user-support software. The entire network will have a software ker­
nel common to all computers in the system and will include a standard 
operating system, networking software, and distributed database man­
agement system. 

Typical management tools will include tools for configuration 
management, project scheduling, cost management, document creation 
and reference, information storage/retrieval, and other management 
tools that support the entire life cycle. The clerical workstation 
will include word processors, interoffice mail, and tools for report 
generation. The software development workstations will have a set of 
tools that are integrated across the development life cycle and allow 
system engineers to interact with requirements analysis tools. Once 
the system requirements have been adequately defined, design and code 
will be automatically generated and integrated. Easy-to-use test 
tools will support automatic testing of the integrated software 
modules. These workstations should be connected by local area net­
works to achieve maximum cooperation and sharing of information among 
all the workstations. In the near-term, tools can be introduced 
without integration and without respect to other tools and the soft­
ware methodologies. 

A time-phased specification for networked environments should be 
produced during this near-term. The time-phased specification will 
chart the tool environment at each time frame. The tools will be 
added and integrated into the environment incrementally. 

The integrated networked environments should 
other language support will be retained in order 
mental support based on time-phased specification. 
written in other languages must be supported. 

64 

utilize Ada, but 
to provide incre-
Existing software 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Provisions must be made to add knowledge based and advanced 
architecture technology in the future. 

The principal benefits are the production of higher-quality, more 
reliable software for U.S. Air Force systems, reduced life cycle 
costs, improved schedules for software development and maintenance, 
and more effective utilization of skilled software personnel within 
the u.s. Air Force. 

A 40 percent (for consistency) improvement in productivity is 
expected by the end of the year 1990, if the contracts are awarded in 
1984. Incremental improvements in productivity will be achieved 
between 1984 and 1990 through the toolkits and a preliminary network 
of tools. 

Even greater improvements (order of magnitude) are possible as 
artificial intelligence and advanced computer architecture technolo­
gies mature and are applied to the software development tool environ­
ments. 

Several system houses have already demonstrated that the approach 
is feasible; therefore, the risks associated with deployment of these 
integrated networks of tools and workstations is moderate. Most of 
these techniques are presently being successfully applied to other 
engineering disciplines such as electronics design, structure design, 
and mechanical design. 

The risk of inserting Knowledge-Based Systems Technology and 
Advanced Architecture Technology into these systems is high at this 
time; therefore, these technologies should be pursued as research 
tasks until the technologies mature sufficiently for insertion into 
the tool environments. 

4.2.7 Transition to Software Engineering Environments 

How and in what style the near-term and intermediate-term envi­
ronments are developed, distributed, and supported is crucial to 
achieving the goals previously outlined in an effective manner. Such 
nontechnical problems may lie at the core of U.S. Air Force adaption 
and use patterns. 

The near-term SEE(s) would have to be based largely on known 
operating systems and environments with fairly well understood pro­
ductivity characteristics. 

The proper proprietary concerns of creators of candidate software 
have to be addressed: if candidate systems' owners see no overall 
economic benefit, commensurate with what is perceived as necessary to 

65 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


recoup capital investment, the owners can be expected not to cooper­
ate. If fair and equitable royalties and other incentives are used, 
the cooperation will be easier. 

Before including a proprietary system in any SEE it would have to 
pass acceptance through some kind of committee and a rigorous accep­
tance scheme. In the short term, certain systems could be demon­
strated on some existing u.s. Air Force program that would be spe­
cially chartered for this role. The demonstration would qualify the 
system for inclusion in the SEE. Such projects as the IV and V 
portion of some software procurements would be the ideal testing 
ground needed for this kind of preselection. 

4.2.8 USAF Support and Maintain Environments 

It is known that keeping an environment working is a nontrivial 
maintenance task. Even the private sector at its best has difficulty 
with the configuration control (change control) issue for a software 
system that might have millions of lines of source. 

No matter how many pieces are involved, or how many suppliers are 
participating, there needs to be one central location at which 
changes are integrated and from which current system versions are 
distributed. Just where this should be -- logically and physically 
-- is a tough question; but the need should not be questioned. 

Version Releases. Different versions of each SEE have to be well 
checked before distribution to the using community. 

Rapid "fixes" to immediate problems (Hot Line). There must be user 
support to deal with emergency questions. 

Contracting for major enhancements. Major changes in the SEE have to 
be handled carefully. It may be appropriate to contract much of this 
kind of work. 

Re-hosting to new computers as needed. Moving a SEE from one com­
puter to another must, by design, be a task of known and predictable 
dimensions. True portability, being impossible, has to be enhanced. 

Training and consulting. System use training, including training in 
the application of the standard methodology, should be coordinated 
from a central source. 

The group mentioned above by the Summer Study would have to over­
see this set of activities. 

Collecting data about software engineering productivity is a 
tough issue, in part because it touches on management issues that can 
affect employee relations. There has not been much success in making 
measurements in the past. 

66 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Assessing the effectiveness of competing SEEs requires that some 
kind of comparative data be collected. Now is the opportunity to 
instrument the environment so that good information can be recorded, 
and so that biasing, because data is being collected, does not occur. 

The committee proposes that the u.s. Air Force provide an incre­
mentally expanding capability for automating the development of 
embedded computer systems software. Automation of many of the labor­
intensive tasks over the entire software development cycle with em­
phasis on the requirements and preliminary design phases should be 
accomplished by: 

1. Implementing three-five integrated networks of software 
engineering workstations, software tools, test support systems 
and documentation; 

2. Acquiring and installing "off-the-shelf" software tools or "tool­
kits" on selected host computers with improved requirements 
analysis and traceability tools to provide near-term benefits; 

3. Developing and supporting a library of reusable software; 
4. Producing a U.S. Air Force catalog of software tools and reusable 

software that will be available to all U.S. Air Force projects; 
and 

5. Providing training and support to U.S. Air Force personnel in the 
use of the software-automated workstation environments and 
toolkits. 

67 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


5.0 ADVANCED TECHNOLOGY OPPORTUNITIES 

5.1 Advanced Acquisition Management 

In the far-term, software acquisition management is expected to 
become more automated because of the array of tools that will have 
been perfected. However, the far-term capability will be realized 
only if the research and development of these tools is initiated in 
the near-term. In addition, as new technology, such as artificial 
intelligence, is incorporated into Mission Critical Systems, the life 
cycle and hence the management of that life cycle must be modified or 
altered. 

This section concerns itself with the acquisition of Knowledge 
Based Systems and the development and use of Advanced Software En­
gineering Environments, including System Project Office Decision Sup­
port Tools and a Requirements Definition System for software systems 
acquisition. 

5.1.1 Acquisition of Knowledge Based Systems 

Today's acquisition of mission critical software by the U.S. Air 
Force is geared to a separation of the various phases of the life 
cycle, and reviews and inspections geared to those separate phases. 
The new MIL-STD-SDS further reinforces this model of distinct phases 
and adds further inspection/review points and guidance to help man­
agement across the software life cycle. 

In contrast, the acquisition of Knowledge Based Systems to date 
has not followed the accepted pattern laid out in MIL-STD-SDS and its 
predecessors. These systems have evolved as numerous refinements of 
an initial prototype. Documents such as requirements (B) specs, 
design (C) specs, reviews such as preliminary design reviews (PDR) 
and critical design reviews (CDR), and other forms of documentation 
and policy are not applicable. If the U.S. Air Force is to acquire 
Knowledge Based Systems in support of, or as part of, its weapons and 
defense systems, it must know how to go about those acquisitions. 

In the instance of acquiring knowledge-based mission systems the 
focus will shift from today's concept of software to a refinement of 
specifications. The issue then becomes: (1) specifying requirements 
and (2) cataloging inference rules. There are not yet adequate 
methods for measuring the quality of these processes. 

Planning should begin now for the introduction of Knowledge Based 
Systems. Techniques are needed for specifying a Knowledge Based Sys­
tem, natural-language input and output, and other capabilities 
derived from artificial intelligence technology. The acquisition 
process must include knowledge acquisition and knowledge verifica­
tion. A task force of experts in AI technology and people familiar 

69 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


with system acquisition should propose interim (near-term) proce­
dures. This will permit the insertion of this technology without 
unnecessary risk or delay. 

Eventually, based on the management procedures proposed, evalua­
tion experiments should be performed and drafts prepared for revised 
regulations, standards, policies, and SPO guidelines, if necessary. 

The risks in this area are considered moderate to high. The 
field of knowledge engineering is in its infancy and there are few 
guidelines available for specifying requirements and acquiring and 
verifying knowledge or expertise. If we have learned anything from 
the production of conventional software systems, it is the need for a 
discipline to assist in these activities. 

In one class of Knowledge Based Systems, namely, expert systems, 
the verification problem may be simpler than for conventional soft­
ware. This is because a self-explanation capability for results 
generated is usually automatically included in all prototypes pro­
duced. However, this thesis remains to be proven. 

While the Summer Study group could not arrive at a detailed cost 
estimate to attack the wide class of problems associated with the 
acquisition of Knowledge Based Systems, it recognized that the expen­
diture of funds in this area is limited by the shortage of talent to 
address the issues. It is therefore recommended that the following 
level of effort be supported: 

Year 1 - $500K 
Year 2 - $500K 
Year 3 - $l,OOOK 
Year 4 - $l,OOOK 
Year 5 - $l,OOOK 

The earlier years should be devoted to analyzing existing suc­
cessful and unsuccessful Knowledge Based Systems and interviewing 
developers and users. The products should be guidelines to be 
followed in the acquisition of such systems and suggested approaches 
to measuring the qualitative and quantitative performance of Knowl­
edge Based Systems. The later years should be devoted to implement­
ing, evaluating, and modifying the guidelines and measuring the pro­
cesses developed. 

Beyond five years, act1v1t1es in this area should be melded with 
the acquisition, program management, and measurement activities of 
the STARS program, the Joint Logistics Commanders, and others. 

If experience with conventional software is any indication, 
attempting to provide a common discipline into the acquisition pro­
cess of Knowledge Based Systems would be a wise move on the part of 

70 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


the U.s. Air Force. The sooner it is accomplished, the fewer the 
problems to be encountered as the number of acquisitions of Knowledge 
Based Systems dramatically increases in the 1990s. 

The need for handling the acquisition of Knowledge Based Systems 
as part of the U.S. Air Force mission critical systems is imminent. 
The U.S. Air Force must put whatever discipline it can, as soon as it 
can, into the specification, requirements, verification, and perfor­
mance aspects of these systems. This discipline must be augmented or 
otherwise modified as more knowledge and experience are gathered. 

5.1.2 Advanced Tool Environments 

We are witnessing a trend toward distributed architectures, 
incorporation of database management systems, incorporation of intel­
ligent processors, and networking with other systems in the develop­
ment of Embedded Computer Resources (ECR) systems. The software ele­
ments of these systems are likely to be developed by different soft­
ware contractors with expertise in narrow and differing technical 
areas and with differing software development methodology, productiv­
ity, and quality. 

The availability of Knowledge Based Systems (KBS) and application 
of artificial intelligence (AI) for software development will bring 
about a major change in the way software is acquired. The impact 
will be felt not because this will improve the highest level of 
expertise available, but because all cormnunications will be at the 
knowledge-based "expert" level. Today' s management style is often 
defensive -- its aim is to avoid or recover from failure. With KBS, 
management tools and techniques can be tuned to productivity issues. 

The growing size and complexity of the software content in these 
future ECR systems will make it increasingly difficult to estimate 
accurately software development costs and to schedule realistically 
the software development effort. The tasks of accumulating and pro­
cessing project status data and providing accurate software develop­
ment status indicators, including warnings or crisis notifications, 
will become increasingly difficult. Also, the ability to reach man­
agement decisions by selecting and projecting the outcome of all 
reasonable alternatives will likely exceed human capacity for reason­
ing and intuition. Therefore, the development of new advanced soft­
ware acquisition management systems is becoming increasingly impor­
tant. 

The U.S. Air Force should initiate development of Decision Sup­
port Systems (DSS) to support software cost estimating, project 
scheduling, and project status assessments and conununication. The 
DSS will provide the basic functions depicted in Table 1 and will 
draw upon three important methodologies: Operations Research/Manage­
ment Science, Computer Science, and Behavior Science. An example of 

71 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


an experimental DSS to support project 
Interactive Technique for Project 
Evaluation (GITPASE) System. 

scheduling is the Graphical 
Analysis, Scheduling, and 

Recently, considerable effort in Computer Science 
directed toward development of Knowledge Based Systems 
artificial intelligence (AI). Both KBS and AI obviously 
siderable promise for DSS. 

has 
(KBS) 

been 
and 

offer con-

We reconunend that the U.S. Air Force fund research to improve 
software productivity, quality, and cost metrics based on improved 
data collection and technology. The U.S. Air Force should also fund 
research to develop a Knowledge-Based Program Management Assistant. 

The above research and development approach should be structured 
to provide mid-term as well as far-term useful products. These pro­
ducts are currently envisioned to include the following: 

1. Mid-Term: Develop formal management models 
a. 
b. 
c. 
d. 

e. 

2. Far 
a. 
b. 
c. 

Performance, quality, and cost metrics enhanced 
Improved management performance and indicators 
Improved integrated decision aiding techniques 
Cost and schedule planning models based on realistic devel­
opment life cycles for various applications 
Advanced Graphics 

Term: Advanced automated management systems 
Through exploratory development 
Knowledge Based Management Assistant 
Advanced Manager Workstation 

Table 1. Five Basic Decision Support System Functions 

Interrogation Interaction between the human and the DSS. Either the 
human or the DSS may initiate an information request 
or respond to the other. 

Modeling 

Filtering 

Monitoring 

Gathering 

The process of employing mathematical or computer 
models to develop strategies and information. 

Reducing, summarizing, aggregating, and combining data 
into information. 

Continuously observing the data and providing informa­
tional comments to the decision maker on an automatic 
basis, e.g., Software Schedule Alarm. 

The process of obtaining data from sources external to 
the DSS. 

72 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Cost/Benefit/Risk An initial five year cost estimate to develop a 
Knowledge Based Management Assistant with an Advanced Manager Work­
station is $3 million. 

Development of a Knowledge Based Program Management Assistant 
will provide direct benefit to the development of a "Knowledge Based 
Software Assistant" (KBSA), discussed later, that is envisioned to 
derive implementations from specifications for the development, evo­
lution, and maintenance of large software projects. The complete 
KBSA development is projected to culminate in about 10 to 15 years. 

The Knowledge Based Management Assistant is considered to be a 
medium-risk objective since precedent KBS developments and DSS are 
evolving from the research environment, with some innovation requir­
ed to extend benefit to the Knowledge Based Program Management 
Assistant. The other objectives are considered to be low risk. 

SUUDDary The amount of information that acquisition managers and 
project managers must deal with to manage mid- to large-size 
software developments and maintenance activity is too much responsi­
bility for one person. Even when managed as a team, there is a lack 
of communication among team members. Automated decision support 
systems, incorporating formal management models that can later form 
the basis of knowledge-based program management tools, are seen as a 
solution. 

The long-range concept for a requirements tool is to extend its 
functions to ensure that project risks are minimized and that there 
is a favorable schedule impact on the acquisition of systems with 
significant software elements. A comprehensive requirements tool of 
the future should allow the user command and the SPO to define 
alternative weapon system concepts that can be quickly described and 
analyzed to ensure that technical, schedule, and budget risks are 
understood. Supporting tools would provide multiple evaluation 
levels that include requirements development, cost estimation, 
schedule estimation, technical evaluation, performance modeling, 
simulation, life cycle definition and analyses, and overall system 
optimization analysis. 

The near-term tool environment will be lacking in several 
respects with regard to the above mode. Specifically, it will be 
lacking in modeling and prototype support; integrated tools for 
estimating project budget and schedule; tools for estimating tech­
nical risk; and tools for performance modeling. In addition, there 
will be little support for developing a total life cycle plan, and 
the entire set of tools will not be properly oriented to help acqui­
sition managers and users make trade studies among technical, pro­
ject and functional issues. 

73 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The near-term actions necessary to make a comprehensive system 
requirements and project definition tool possible in the long term 
are: 

1. Define general requirements for a comprehensive requirements 
definition support system with the following recommended attri­
butes. 
a. Natural-language interactive dialog to better articulate 

requirements; 
b. Machine interface to developer tools (e.g., specification 

tools, unit folders); 
c. Rapid prototyping demonstration capability for functional 

system; 
d. Automatic assists in Testing End Product Against Require­

ments (e.g., automated test generation); and 
e. Interfaces with cost/schedule tools. 

2. Begin collection of the knowledge base requirements for operat­
ing the tool. 
a. Establish a team that interviews a subset of user command 

and SPO personnel to determine the knowledge base require­
ments in project budget, project schedule, performance 
estimation, system modeling, system simulators, and system 
analysis. The team should develop a refined plan for col­
lection of knowledge for a comprehensive requirements and 
system definition tool. 

b. Have the team develop a knowledge collection format that is 
used to expand the interview process in quality and quan­
tity. 

c. Identify the experts within the U.S. Air Force supporting 
contractors that have demonstrated successful concept stage 
formulation. 

d. Use the interview, identified experts, and the team to 
begin a collection of decision knowledge, techniques and 
tools that should be integrated into a comprehensive 
requirements tool. 

3. Fund research in system definition methods that include the pro­
ject budget and schedule, the life cycle plan, the technical 
risk factors, and the performance modeling -- the system proto­
typing that will support a comprehensive system requirements and 
project definition tool. 

4. Track research on Knowledge Based Systems to establish the 
feasibility of development of a comprehensive requirements 
tool. Prototype subsystems should be developed when feasible. 
Present identified candidates for subsystems of a comprehensive 
requirements tool are: 

74 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


a. Requirements (near-term recommendation); 
b. Project Budget or Cost Estimate; 
c. Project Schedule Estimation; 
d. Technical Risk Evaluation; 
e. Performance Modeling; 
f. Concept Proof Prototyping; 
g. Simulation; 
h System Optimization Analysis; and 
i. Life Cycle Analysis. 

5. Use test site cases to prove the value of subsystems. 

6. Integrate developed subsystems as usefulness is proven to build 
the comprehensive requirements tool. 

5.2 Knowledge Based Software Technology 

Knowledge Based Software Assistant (KBSA) is a concept for a 
methodology and a set of techniques for the automation and integra­
tion of software development and maintenance. This concept if 
proven feasible has the potential for bringing about a radical 
improvement in the software development process. A general plan has 
been developed, with u.s. Air Force support, for realizing this 
high-potential gain through a program of medium-risk, high-payoff 
product developments. 

The Knowledge Based Software Assistant concept consists of a set 
of complementary principles and techniques. These principles and 
techniques are motivated by several key perceptions, relating to: 

1. Use of prototyping and incremental development to assure that a 
system design is relevant to user needs; 

2. Maintenance of design knowledge, e.g., objectives and design 
decisions, in explicit form to assure that the many facets of 
the development and maintenance of a software system will remain 
integrated over its life cycle; 

3. Use of formal specifications, to assure unambiguous definition 
of other system developments; and 

4. Use of automated program refinement and optimization techniques 
to generate working systems initially, and to regenerate them to 
meet new objectives, in order to reduce development costs and to 
assure design integrity over the life cycle. 

Specific approaches have been proposed for tools and procedures 
that support the activities of developers and maintainer&, managers, 
and users. A key organizing concept is that the tools and proce­
dures be realized within a computer-based programming environment as 
a machine-intelligent assistant, with the capabilities for initia-

75 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


tive, explanation, planning and execution, maintenance of system 
knowledge, and coordination of the activities of multiple partici­
pants. 

A strategy has been proposed for developing the KBSA concept 
incrementally, through a sequence of low- and medium-risk efforts. 
For example, techniques for using design knowledge would be devel­
oped initially using informal representations, techniques for proto­
typing would be developed experimentally in specific application 
domains, and techniques for system generation would be developed 
initially with a high degree of progranuner participation. Concur­
rently, research would be undertaken to develop techniques for 
formalizing and automating these functions. The research would 
exploit ideas being investigated in current research in computer 
science and artificial intelligence. 

Current software practice is a highly fragmented and labor­
intensive activity. For the complex software used in U.S. Air Force 
systems, these deficiencies lead to several serious shortcomings in 
quality and cost, including (1) inadequate responsiveness of systems 
to user needs, (2) high cost of initial development, (3) excessive 
cost of repair and modification, (4) lack of reusability for new 
applications and portability to new environments, and (5) high sen­
sitivity of cost and performance to the level of skill of the devel­
opers. A significantly higher level of automation in the software 
development is therefore essential, not only to increase programmer 
productivity, but to assure that future systems will perform as 
needed, remain relevant and maintainable over their lifetimes, and 
be acquirable quickly and at acceptable cost. 

Establishment of new software practices based on KBSA will 
require 7-10 years of intensive research and development. Propaga­
tion of the new technology into practice will require wide partici­
pation in the research and development community. Initial effort 
should be directed toward defining a set of specific mid-term and 
long-term products, funded at an increasing level, over a period of 
seven years. Participation by other services and agencies may be 
expected due to the generality and importance of the end goal. 

The U.S. Air Force needs to justify fully the immediate estab­
lishment of the KBSA research program. Although support by other 
services and agencies may be expected, specific U.S. Air Force 
applications will benefit directly from KBSA techniques, and con­
tinuing support at a high level will be justified. An appropriate 
level of support in the initial seven years would be (in millions of 
dollars): 2.0, 3.0, 4.0, 4.0, 5.0, 4.0, and 2.0. 

This schedule assumes technique development in years one-five, and 
initial implementations and demonstrations in years three-seven. 

76 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The benefit of the program may be measured by the difference 
between a natural growth in software development power (estimated by 
the STARs program as being on the order of a fourfold increase in 10 
years), and a radical advance (on the order of at least ten fold in 
10 years). Benefits in terms of correctness, timeliness, relevance, 
and adaptability of software will be multiplied greatly in terms of 
U.S. Air Force system effectiveness, if proven feasible. 

The proposed program has high-risk and low-risk components. 
Individual products proposed, e.g., an intelligent design database 
manager, will have benefits independent of the KBSA context. Devel­
opment of an integrated technology will require diligent effort, and 
cannot be guaranteed. There is little doubt that ideas developed 
during the research will find useful expression in the evolving 
software practice. 

A major research and development program towards Knowledge-Based 
Software Assistant technology is recommended. The benefits will be 
a radical improvement in capability for producing software for u.s. 
Air Force systems, economically and quickly, that is responsive to 
initial and evolving user needs, easily maintained, and composed of 
elements that can be reused in other applications. Participation by 
other services and agencies can be expected. 

5.3 Advanced Requirements Specification and Design Technology 

This section concerns itself with advanced tools and techniques 
for establishing, specifying, and tracing requirements and with a 
new concept for creating, maintaining, and using libraries of speci­
fications and designs. 

Requirements and Specification Technology 

In all software development projects the initial phase is the 
definition and communication of the requirements of the software 
system. The formal specifications for the software must then be 
correctly and accurately defined. This process has often resulted 
in the generation of many errors in the software due to the inade­
quacy of the current requirements/specification techniques and tools. 

The requirements definition and the tracing of the requirements 
throughout the entire software life cycle is inadequately performed 
within the u.s. Air Force. The current requirements/specification 
languages, tools, and techniques used by the U.S. Air Force are 
inadequate due to the lack of generality and formality, and the 
inability to verify the successful implementation of the require­
ments. 

77 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Often the requirements for a software system will change during 
the life eye le of the system. The current requirements/specifica­
tion tools and techniques do not support this critical need. 

The following recommendation is made for the near term: perform 
an evaluation of the current requirements and specification technol­
ogy in order to determine the relative successes and failures of the 
current techniques. The results of this survey can be used to 
determine the inadequacies that need to be corrected. In addition, 
with this information criteria can be developed for future advanced 
requirements/specification techniques such as those discussed below. 

For the mid-term the following recommendations have been devel­
oped: 

1. Develop requirements techniques that can support the analysis of 
system requirements and provide cost/benefit analysis of changes 
made in requirements. 

2. Develop requirements/specification techniques with the following 
characteristics: 
a. The requirements/specification techniques should be inte­

grated with other tools used in subsequent software life 
cycle phases (design, coding, testing, and maintenance); 

b. The techniques should support the traceability and verifi­
cation of the user requirements; 

c. The techniques should provide automated consistency check-

d. 

e. 

ing; 
The techniques 
(ease of input, 
The techniques 
and 

should provide improved human interfaces 
understandability, natural-language based); 
should support testability of requirements; 

f. The techniques should support the definition of nonfunc­
tional requirements. 

The successful implementation of the first mid-term recommenda­
tion requires that the u.s. Air Force establish a program that will 
develop application-specific libraries in which requirements/speci­
fication tools and techniques are a significant component. These 
libraries should provide a basic set of tools to be used in the 
analysis of system requirements. The capability to perform cost/ 
benefit analysis of changes to the requirements should be included 
in the tools developed. 

Research and development work should be funded to design tools 
with the characteristics stated in the second mid-term recommenda­
tion. The success of this work will have a profound effect on the 
successful adoption of the far-term recommendations, which are: 

78 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


1. Develop specification languages that can be executed to provide 
early prototyping and modeling of software systems; 

2. Develop techniques that can be used in advanced applications 
(distributed systems, multilevel security, concurrent proces­
sing, database applications, and Knowledge Based Systems). 

The successful implementation of the first far-term recommenda­
tion requires that funding for research and development be provided 
in the area of executable specification languages. Automated speci­
fication languages must be developed in addition to the required 
language processors. With the aid of executable specifications, a 
significant portion of the software being developed can be demon­
strated at an early stage of system development. 

The implementation of the final recommendation requires that the 
previous recommendations be adopted and successfully completed. As 
applications become more complex and sophisticated, adequate 
requirements/specification tools and techniques must be developed 
for these applications. Based on evaluation of the success of 
implementing the previous four recommendations, the final recommen­
dation is to provide funding for the development of advanced 
requirements and specification technology. 

The total cost for the area of requirements and specification 
technology is $40 million. The allocation of these funds to the 
five recommendations is: 

1. Survey of requirements/specification tools and techniques: 
$2 million; 

2. Development of requirements techniques to support the analysis 
of system requirements: $8 million; 

3. Development of enhanced requirements/specification techniques: 
$8 million; 

4. Development of executable specification languages: SlO million; 
5. Development of requirements/specification technology for 

advanced applications: $12 million. 

The use of improved requirements and specification technology 
will result in lower software development cost and increased pro­
ductivity, reliability, and correctness of software. The benefit 
that can be gained from the survey of existing requirements/specifi­
cation tools and techniques is that criteria for evaluating future 
tools and techniques can be established. 

The use of better requirements and specification technology will 
result in software systems that can be verified. The use of execut­
able specifications will allow users to more accurately define and 
view the requirements of the software system being developed. 

79 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The overall risk of the five recommendations is medium. The 
degree of risk is affected by the fact that the risk involved in the 
survey is low, but the risk associated with the tool development is 
medium to high. This risk is primarily due to the complexity 
involved in developing new techniques for requirements and specifi­
cations. The area of Knowledge-Based Systems is clearly the radical 
area with the highest risk. Overall, however, the development of 
requirements and specification technology represents a conservative 
advance with the potential for significant gain. 

Requirements and specification technology is an area that has 
been inadequately addressed by the U.S. Air Force. This lack of 
concern has resulted in software systems that are over budget, 
inaccurate, and incomplete. The development of improved and more 
sophisticated techology can provide solutions to these problems. 

Specification and Design Libraries 

The trend of increasing software development costs can in part 
be attributed to the practice of not taking advantage of the knowl­
edge, experience, and products resulting from previous software 
development efforts. 

Investigators have performed research related to the area of 
software specification and design libraries. Many have advocated 
the designing of software that is more contractable and expandable. 
Some of the techniques required for specification and design librar­
ies have been investigated. Also, there are currently research 
efforts in application specific domains in the Knowledge-Based 
Systems area. 

Facilities and techniques currently are minimal in the u.s. Air 
Force to support the reuse of software specifications and designs. 
Several research efforts have been conducted that are relevant to 
the establishment of specification and design libraries and the re­
usability of software products. 

For the near term, the following recommendations provide a pos­
sible strategy for the investigation of specification and design 
libraries: 

1. The feasibility of specification and design libraries should be 
determined by the U.S. Air Force. The tools and techniques 
required to support these libraries must also be considered. 

2. The U.S. Air Force needs to determine the feasibility of speci­
fication and design libraries that would serve as generic units 
for application-specific domains. 

80 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


3. The u.s. Air Force needs to determine 
of existing software libraries, and 
populating, using, and maintaining 
libraries. 

the successes and failures 
to develop a strategy for 
specification and design 

The implementation of the three near-term recommendations 
requires that the U.s. Air Force establish and fund a survey that 
will investigate each recommendation. The survey should be per­
formed in academia, industry, and government. The successful imple­
mentation of the mid- and far-term recommendations requires that 
each of the near-term recommendations be successfully accomplished. 

The recommendations developed for the mid-term include the fol­
lowing: 

1. Support environments for the development, configuration, and 
maintenance of the tools and techniques required for the soft­
ware specification and design libraries must be developed. 

2. Based on the survey of application domains, the u.s. Air Force 
must populate the support environments with specifications and 
designs for generic software units. It is recommended that at 
least two such libraries for different domains be populated. 

3. The u.s. Air Force should select several system development pro­
grams to use the relevant libraries in the development of 
significant portions of the software. Data should be collected 
on the productivity of the software team and the quality of the 
software developed for those portions, and then compared with 
productivity and quality figures for software of equivalent 
function and complexity. 

The successful implementation of the mid-term recommendations 
requires initially that the U.S. Air Force provide funding to 
develop support environments for the tools and techniques required 
by software specification and design libraries. The enhanced sup­
port environments can then be used in the development/population of 
the libraries and the further evaluation of the feasibility of the 
libraries through actual use. 

If the initial phases are successful, the far-term goal should 
be to populate and use as many application development libraries of 
specifications and designs as are feasible. In a truly competitive 
atmosphere, if successful, the libraries should pay for themselves 
through heavy contractor use. 

The cost breakdown (in dollars) for the near, mid- and far-term 
is as follows: 

1. Research to determine the feasibility of specification and 
design libraries: $1 million; 

2. Funding for a survey of existing software libraries: $1 million; 

81 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


3. Funding for the investigation of the successes and failures of 
existing software libraries: $0.5 million; 

4. Development of enhanced support environments for software 
libraries: $4 million; 

5. Development of initial libraries and evaluation of merits 
through actual application: $4 million; and 

6. Development of additional libraries: $10 million. 

The primary benefit to be gained from the use of software speci­
fication and design libraries is that reusable software modules will 
begin to be developed and incorporated in future software systems. 
This will also encourage the development of software families. The 
reuse of specifications and designs can result in a dramatic 
decrease in the cost of software system development. 

Overall, there exists a medium degree of risk in the realization 
of the six recommendations. The degree of risk for the first four 
recommendations is low but there exists a higher degree of risk for 
the successful accomplishment of both the mid- and far-term recom­
mendations. 

Techniques and tools that support the reusablility of applica­
tion software for embedded systems do not currently exist. The 
benefits to be gained from the development and use of specification 
and design libraries are significant. The use of existing database 
technology, coupled with techniques for designing software families, 
provides an excellent area for future research by the U.S. Air Force. 

5.4 Advanced Verification and Validation Techniques 

Despite many years of research and practice, software system 
verification and validation continues to be responsible for a major 
component of the cost of system development and maintenance. The 
relatively low technological level of these activities makes it 
difficult and costly to achieve desired system quality, to assess 
system feasibility, and to predict development costs. For critical 
functions such as system safety, integrity and security, present 
verification techniques do not provide adequate assurance for the 
extremely high-level of correctness required. New technologies for 
software development offer prospects for radical changes in tech­
niques for verification and validation, but these will not be avail­
able in practice for many years. Research is needed on how present 
practice can be substantially upgraded, both for large software sys­
tems and for critical system components. 

Little progress has been made in the art of software system ver­
ification and validation. The primary methods continue to be test­
ing and informal design review. The cost of testing remains a high 

82 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


fraction of system development and maintenance cost, e.g., from 40-
60 percent, depending on system criticality. The cost of validat­
ing system requirements and design (to determine completeness and to 
assess feasibility of implementation) is a much smaller fraction, 
but the poor state of practice is responsible for much hidden cost. 
For example, many design and coding errors are found only after 
installation in the field, at which time the cost of repair is ex­
tremely high. For large systems of low and medium criticality, much 
expensive testing is needed in order to reasonably ensure that the 
system will perform correctly, while for small systems (or small 
components of large systems) with high criticality (e.g., control­
ling system safety or security), the use of testing or verification 
invariably leaves great uncertainty that required levels of protec­
tion will be reached. 

This poor state of affairs is partly a consequence of the inher­
ent limitations of testing (i.e., the response of a system to a 
finite behavior for the infinite set of inputs that may be exper­
ienced in actual operation). The use of informal descriptions for 
requirements and specifications also contributes harmful ambiguity 
to the validation and verification process. 

Pending the radical improvement in system generation that may 
result from long-range research, several steps can be taken that 
would have a significant impact in the mid-term, e.g., five years. 
These would include systematic methods for structuring designs for 
testability and for instructing design document to provide clear and 
unambiguous definitions of intended behavior. These methods should 
be implemented by appropriate tools integrated into modern work en­
vironments. 

More significant advances will require development of more 
fundamental methods for system definition and analysis. Areas for 
which recent, promising research results exist include (1) formal 
modeling of specifications, (2) formal verification, and (3) sym­
bolic testing. In formal modeling, an abstract statement of speci­
fications is constructed using mathematically well-defined nota­
tion. Such models can provide a succinct statement that can be 
evaluated for relevance to user needs by manual inspection. Some 
notations also allow direct machine interpretation, using test cases 
(recent introduction of efficiently interpreted very-high-level 
languages, e.g., Prolog, has expanded the possibilities for abstract 
definition in interpretable form). This method appears to have 
significant value for large systems provided that modular construc­
tion is employed. Work needed to develop this technique includes 
development of (1) languages for modeling the behavior and proper­
ties of complex real-time systems, and (2) tools for simulating sys­
tem behavior directly from requirements models. 

83 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Formal specifications also can provide a reference for proving 
the correctness of designs with respect to the modeled requirement, 
for all possible input data conditions. Several sets of tools have 
been developed to support such verification, and have been applied 
experimentally in the areas of computer security, reliability, and 
communication protocols. For the foreseeable future, formal veri­
fication will be limited to small systems or limited aspects of 
large systems. Advances in this technology are nonetheless of great 
importance because of the prevalence of critical functions in U.S. 
Air Force systems. Work needed to advance this technique includes 
development of (1) more powerful and convenient-to-use tools and (2) 
libraries of proven (and parameterized) specifications and designs, 
for use in system construction. 

Use of formal methods also has good potential for upgrading 
testing practice. Examples include (1) use of formal specification 
to define proper behavior of a software module for all allowed test 
inputs, and (2) symbolic analysis of program texts to simulate large 
sets of test inputs. Both of these approaches are at an early stage 
of development. Work is needed on basic techniques and on tech­
niques that may be particularly effective in specific domains. Test 
methods are especially needed for systems that have complex behavior 
in the time domain. 

A program of research is recommended in advanced techniques for 
the verification and validation of software systems. The primary 
components of the research should be: 

1. Specifications aimed at the problems of large systems; 
2. Formal verification, aimed at the problems of high-criticality 

systems; and 
3. Testing, aimed at the problems of design implementation. Tech­

nique development should be both general and domain-specific. 
Promising techniques should be implemented in tools and tested 
in practical applications. 

The following schedule of funding is recommended (in millions of 
dollars per year): 2.5, 3.0, 4.0, 4.0, 5.0, 4.0, and 3.0. This 
plan assumes theoretical studies for years one-four, and imple­
mentation and experimentation in years four-seven. 

Expected benefits are (1) a substantial cut in the present 40-60 
percent testing budget for large software system developments, and 
(2) a radical increase in the level of confidence in the correctness 
of critical systems. 

Proposed work on formal modeling techniques for specifications 
including the use of interpretable, very-high-level languages, is 
certain to find some direct applications in system description, and 

84 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


is likely to have a beneficial, indirect impact on software practice 
by increasing the rigor of informal specifications. Formal verifi­
cation has already been introduced into practice (in application to 
secure systems). The major uncertainty pertains to the degree to 
which advanced tools can ease the difficulty of formal verification 
for professional system programmers. Prospects for direct applica­
tion of techniques based on formal testing are uncertain. Basic 
research in this subject will have a beneficial impact on the rigor 
of testing practice. 

Research is recolllllended in advanced techniques for verification 
and validation of software systems. Use of formal methods is sug­
gested in the area of requirements modeling for large systems, proof 
of correctness for critical systems and testing for correctness of 
program modules. Major benefits are expected in the areas of test­
ing cost for large systems and confidence level for critical sys­
tems. Work on specifications and proof can be based on techniques 
that have been demonstrated in current research. 

5.5 Distributed Software Engineering Environments 

Support Systems 

Currently, software developed for the U.S. Air Force may be pro­
duced on a variety of machines in several phases by different devel­
opers. Software standards are lacking, thus resulting in extremely 
high maintenance costs or in systems that do not meet desired 
criteria. Analysis of problems in the area points to communication 
as a major bottleneck in development. A system development tech­
nique, such as prototyping, has been suggested as improving 
developer-user communication. Integrated tool sets creating lines 
of communication between phases of the life cycle improve system 
development continuity, and independent user workstations evolving 
to an intelligent, powerful workstation should enhance development. 
The network connecting these stations is imperative in maintaining 
system integrity and in successful project development and use. 

A serious problem faced by the U.S. Air Force in system develop­
ment is the poor interorganizational transfer of delivered software 
systems. These poor transfer links result in increased error cor­
rection costs, poorly met/unmet requirements, and time delays in 
meeting changing requirements. Already highlighted are the poor 
communication links between the acquisition manager, developer, 
maintainer, and user. Techniques/tools successfully used by the 
developer may be unknown or unavailable to the eventual maintainer, 
with an obvious impact on maintenance cost. Anticipated requirement 
changes by the U.S. Air Force may be unknown to the developer until, 
due to earlier design decisions, a massive software effort is 
required to effect the changes. 

85 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


A common distributed software support environment should be 
developed to serve as a common medium for the acquisition manager, 
developer, tester, maintainer, trainer, and end user. This environ­
ment should support all the earlier discussed technology and manage­
ment technologies -- including metrics to aid in life cycle support, 
and the decision support to allow the acquisition manager/developer/ 
maintainer to direct and control system development -- and provide 
an integrated tool base for development and maintenance continuity. 
The environment must implement security mechanisms to protect sensi­
tive U.S. Air Force and contractor software and data. 

Initially the feasibility of a distributed software support 
environment should be demonstrated. This environment itself may be 
physically distributed. A minimal network connecting the acquisi­
tion manager, developer, tester, maintainer, trainer, and user 
should be established and effectively demonstrated. During the fea­
sibility study, standards to ensure the communication between com­
ponent parts developed by separate individuals should be establish­
ed, since integration problems may be severe without the use of 
simple, well-defined standards. 

Upon success of the feasibility study, the environment should 
evolve through the addition of powerful workstations for both soft­
ware engineers and managers. These individual workstations provide 
the software engineer with better time response and speed when com­
pared with one centralized system. Incorporated into the design of 
the workstations must be the results of the human interface thrusts 
outlined elsewhere in this report, thus enhancing the acceptable and 
improving the exploitation of the new workstations. The far-term 
goal is a fully integrated, reasonably common distributed software 
support environment for all new projects. This environment should 
be integrated into MIL-NET, so the responsibility for security must 
rest with the local network(s) implanting the various portions of 
the environment itself. 

Immediate cost for the design and demonstration of the common 
distributed software support system environment feasibility study 
would be approximately $3 million. This initial study should pro­
vide the prototype for the individual workstations to be developed. 
The most expensive and difficult aspect will be the network develop­
ment, which must assure communication and maintain security and pro­
duct integrity (cost approximately $5 million). 

The environment produced would result in a minimization of the 
problems connected with passing software management, development, 
and maintenance responsibility from organization to organization. 
This common environment would also improve communication between 
management and software engineers. 

86 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


The major problems with system security should be solved by an 
ongoing DoD thrust into multilevel security, and those remaining to 
be solved in implementing this recommendation are considered to be 
of medium difficulty and hence medium risk. 

An environment that provides each system developer, acquisition 
manager, tester, maintainer, trainer, and end user with a common 
medium through which communication is possible will have a high 
position impact on the cost of all system life cycles. Decisions 
made at one phase will be better understood by other phases. This 
understanding will ease the modifications needed throughout the life 
of the software, thus improving productivity and decreasing labor 
and time for system maintenance. 

Database Technology Applied to Environments 

The software life cycle is defined as a series of phases through 
which a software project passes as it evolves from a concept into a 
completed system. The software life cycle is currently recognized 
to be an interactive process both between and among the individual 
phases. Each successive iteration further refines the developing 
system. 

A large amount of information about the software, generated in 
each phase of the life cycle, must be recorded. A computerized 
database can record this information in addition to the documenta­
tion and other information concerning the evolution of the software 
system. 

The lack of database technology applied to environments during 
the software development process has resulted in the following in­
adequacies: 

1. Minimal visibility into software projects; 
2. Minimal project history maintained; 
3. Poor cost estimation and scheduling; and 
4. Poor data collection techniques. 

Relative maturity has been gained in the discipline of database 
technology. This technology has already been applied to several 
tools used in the various phases of the software life cycle. 

The following near-term reconnnendations have been suggested in 
the area of database technology applied to environments: 

1. The U.S. Air Force should develop a common baseline and strategy 
for the collection of critical software information. This 
strategy should be applied to u.s. Air Force software develop­
ment projects. 

87 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


2. The u.s. Air Force should establish a common database where this 
information can be collected and organized. The data should be 
available to government, academia, and industry so that the 
information can be used to develop improved information tech­
niques and models. 

The mid-term recommendation is as follows: 

Develop, maintain, and require the use of tools that will 
accumulate and report project management data and other quantifiable 
measurements. The data and measurements can be used to evaluate 
project status and provide for project visibility. 

The success of the following far-term recommendations is depen­
dent upon the successful completion of the near- and mid-term recom­
mendations. The primary far-term recommendations are as follows: 

1. Database technology 
environments. The 
provide support for 
ware critical data. 

should be included in software development 
function of this technology will be to 

the collection and organization of any soft-

2. Knowledge-Based Systems, database technology, and high-level 
design languages must be integrated into a software development 
environment. 

The following implementation recommendations develop the strat­
egy for including database technology in software development envi­
ronments: 

1. The successful implementation of the first near-term recommenda­
tion requires that existing database management systems be used 
to develop a general purpose scheme for collecting life cycle 
information of developing software systems. This scheme 
includes information about design decisions, cost information, 
and personnel requirements. 

2. The successful implementation of the first mid-term recommenda­
tion requires that research be funded for the development of 
project management tools. The project management tools can be 
used to support the manipulation of the information in the data­
base. 

3. The second mid-term recommendation can be successfully imple­
mented if research is funded that can determine how database 
management systems and software development tools can be inte­
grated and enhanced. 

4. The implementation of the final recommendation requires that 
research be funded to encourage the use of database management 
systems, Knowledge-Based Systems, and high-level design 
languages. Research should be funded that will investigate the 

88 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


coupling of database management systems and Knowledge-Based Sys­
tems. These two areas can provide a significant amount of sup­
port for software development environments. 

The following cost breakdowns have been suggested for the imple­
mentation of the above recommendations: 

1. The collection and organization of life cycle information using 
existing database management systems: $2.5 million; 

2. Funding for the development of project management tools: $2.0 
million; 

3. Integration and enhancement of existing database management sys­
tems and software development tools: $2.0 million; 

4. Coupling of database management systems, Knowledge-Based Systems 
and high-level design languages: $3.5 million. 

The following benefits are envisioned as a result of the appli­
cation of database technology to software environments: 

1. An enhanced visibility of software projects will result; 
2. The development of a project history database will allow for the 

analysis of mistakes and will prevent the subsequent repetition 
of the same mistakes; 

3. Life cycle models of cost estimation and scheduling will result 
in decreased cost and reduction in the delay of software pro­
jects. 

The overall element of risk involved in the successful implemen­
tation of the previous recommendations is considered to be medium. 
The individual risks involved for the successful completion of each 
recommendation follows: 

1. The risk involved in using existing database management systems 
is low because of the wide body of knowledge and experience with 
these systems. 

2. The risk involved in successful completion of the second and 
third recommendations is medium because this is a relatively new 
area of software research. 

3. The risk involved in the successful implementation of the final 
recommendation is one of medium to high because of the higher 
element of risk involved in the areas of Knowledge-Based Systems 
and high-level design languages. 

The use of database technology applied to software environments 
can have a positive impact on the acquisition of software develop­
ment knowledge and experience. The use of database technology can 
contribute to the organization, analysis, and dissemination of the 
information collected. This practice will allow software developers 
to learn from previous development efforts. This information will 
also allow management to direct and track software projects. 

89 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


5.6 Advanced Computer Architectures 

Standard computer architecture is based on concepts, such as 
single, serial flow of control, and location-based data identifica­
tion, that reflect hardware and prograDDDing technology of the late 
1940s. Dramatic advances in circuit speed and the development of 
operating systems and compilers have helped extend the utility of 
the standard architectural model to meet accelerating demands for 
performance and service, but these techniques are unable to keep up 
with recent growth in computational requirements. For example, in 
defense systems, new levels of computational performance of at least 
one thousand fold are required in applications such as signal pro­
cessing, autonomous weapon control, and battle management support. 
New kinds of logical support for computer programs and operations 
are also needed to reduce the cost of software development and to 
improve system reliability. These include (1) support for high­
level languages (e.g., Ada) and very-high-level languages (e.g., 
Prolog and various so-called functional languages); (2) support for 
system design to assure multilevel data security and reliability 
(e.g., testability and fault tolerance); and (3) support for new or 
specialized modes of computing, e.g., distributed processing. 

The de facto standard computer architecture, based on the 
35-year-old von Neumann model, is unable to accommodate new computa­
tional requirements, such as a thousandfold increase in speed, data 
security, and ultrareliability, and new developments in hardware and 
software technology, such as VLSI arrays and very-high-level pro­
gramming languages. Many new architectural models have been 
proposed, but these models are at an early stage of development. 
The lack of well-established models for advanced computer architec­
tures seriously impedes development of future u.s. Air Force sys­
tems. Current industry- and government-supported research in this 
area is inadequate and not significantly motivated by U.S. Air Force 
requirements. 

Requirements for high performance and new functionality employ 
increases in hardware complexity that cannot be realized effectively 
within the framework of the von Neumann architectural model, even 
with projected advances in device technology. For example, replica­
tion of components to achieve higher performance through parallelism 
is poorly accommodated in the present mode. Such replication, to­
gether with increased logical complexity, is made feasible both 
technically and economically by VLSI technology, but the present 
architectural model is poorly suited to exploit such advances. 

90 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


In recent years, many new architectural concepts have been pro­
posed that address these issues. These include (1) object-oriented 
machines to accommodate high-level languages such as Ada; (2) func­
tionally oriented machines, such as dataflow and reduction machines, 
to accommodate very-high-level languages and to provide efficient 
organization for highly parallel processing; (3) array machines 
oriented toward highly structured computational problems such as 
image processing and physical simulations; and (4) network machines, 
oriented toward objectives such as distributed processing, security 
and fault tolerance. No single approach has yet been proven to have 
universal qualities, and it may be that future systems will consist 
of combinations of machine types, but it is too early to be con­
fident about such a judgment. Considerable research is needed to 
evolve a small set of architectural schemes that can provide broad 
domain applicability and effective utilization of device technology. 

A program of research should be undertaken to develop advanced 
computer architectural concepts in support of future u.s. Air Force 
requirements for performance and system development. The research 
should include both basic studies of architectural design principles 
and evaluation of particular machine concepts over a wide range of 
applications. The work would include analytic studies and construc­
tion of experimental models. Construction of general purpose test­
beds to facilitate research is recommended. The work should be 
coordinated with similar work sponsored by other services. 

The following seven-year schedule of effort is recommended (in 
millions of dollars per year): 2.0, 3.0, 4.0, 5.0, 5.0, 5.0, and 
3.0. 

This assumes a level of $1.0 million per year for basic studies for 
years one-four and the remainder for tool development and 
experimental studies. 

Achievement of a small set of architectural schemes that exhibit 
many of the desirable objectives for speed and efficiency of support 
of very-high-level languages cannot be assured . The alternative may 
be a wide variety of techniques that would be employed as needed in 
particular architectures. Significant improvement in architectural 
design can be expected with confidence. 

Potential benefits are extremely high, including radical expan­
sion in maximum machine performance, adequate support of the next 
generation of software methodologies, and high levels of security 
and reliability. 

A program of research is recommended in advanced computer archi­
tecture. The research is expected to make possible the radical 
improvements in performance and functionality needed to meet the 

91 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


computational requirements of future U.S. Air Force systems. The 
program will help accelerate current research and direct it toward 
meeting U.S. Air Force needs. 

5.7 Logic Programming Technology 

The software in many present defense systems, e.g., command and 
control, is strongly characterized by the manipulation of logical 
relations among data. This characterization will be increasingly 
apt in future systems. For example, there will be many kinds of 
autonomous systems that will need to conduct analysis and problem­
solving activities normally performed by human operators (e.g., 
goal-pursuit and diagnosis), and there will be increasing demand for 
powerful logical support in human-interactive systems (e.g., natural 
language understanding, information dissemination and retrieval, and 
decision support). Present general-purpose programming languages 
can be used for such functions, but they involve the programmer in 
enormous amounts of detail and require repeated reinvention of 
fundamental operations required · for symbolic and logical opera­
tions. Use of present methode is consequently costly and error­
prone, with results that are highly dependent on the skills of pro­
gramming experts. 

The trend described is not limited to defense systems. Logic­
intensive programming has been recognized as a basic characteristic 
of the next generation of computing systems, and the development of 
logic programming techniques and supportive computer architecture is 
a major objective in national programs such as Japan's Fifth Genera­
tion Computer Program and the DARPA Strategic Computing Program. 
Objectives of such programs include natural-language and image 
understanding, decision support, expert systems for design and diag­
nosis, intelligent database systems, and smart weapons. 

A new generation of programming languages that are extremely 
well suited for logic programming has emerged from research in com­
puter science and artificial intelligence. Examples include LISP, 
Prolog, LogLISP, and OBJ. These languages have been implemented in 
practical form and are being tried experimentally in a wide variety 
of applications. A commitment to Prolog was made at the beginning 
of the Japanese program, but it appears likely that some extension 
of the language will occur as the program matures. The merits and 
limitations of various languages (e.g., flexibility, efficiency, and 
amenability to parallel proceuing) are currently being debated by 
researchers. It is clear that these languages greatly simplify the 
programming process in a wide domain of applications, with little 
loss in computational efficiency compared with conventional imple­
mentations. Several languages also appear to be easy to learn for 
persons with little technical training. These qualities represent a 

92 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


major positive step toward increasing the conceptual and expressive 
level of programming, which has enormous potential benefits for pro­
gram reliability, maintainability, and economy. 

The various languages are still at an early stage of develop­
ment. The full power of the languages for general applications 
remains to be determined. Since the conceptualization of problems 
for these languages is different from that traditionally practiced 
for current languages, good programming support tools and a large 
body of examples will be needed to establish this mode of program­
ming in general practice. 

Software in defense systems is increasingly characterized by 
complex logical, non-numerical relatione among data. This trend 
will be greatly accentuated in future systems for both autonomous 
and human-interactive behavior. Use of present programming 
languages for such applications is awkward and error-prone, and 
discourages direct programming by user experts. Languages and tech­
niques that will simplify the task of creating logic-intensive pro­
grams for defense applications are and will be sorely needed. 

A substantial program of research and development in the tech­
nology of logic programming is recommended. This research program 
should include development of (1) advanced languages, with consider­
ation of generality, suitability for parallel processing, and effi­
ciency of implementation; (2) programming methods, with emphasis on 
development of problem-solving approaches over a wide range of 
applications and system levels; and (3) computational support for 
programming (i.e., tool environments) and run-time execution (i.e., 
hardware support for special operations). 

The following schedule of effort is recommended (in millions of 
dollars per year, over a period of seven years) : 1. 5, 2. 0, 2. 0, 
4.0, 4.0, 4.0, and 2.0. 

This plan assumes techniques development in years one-three, and 
a range of implementation and experimental application efforts in 
years four-seven. The program should be coordinated with other DoD 
efforts in the area. 

Potential benefits to the U.S. Air Force are great. There is a 
possibility for a radical improvement in productivity, program 
quality and maintainability for future, complex systems. 

The main uncertainty in success is whether new software methods 
will emerge from research laboratories to be accepted by defense 
contractors as widely applicable in defense software. If this does 
not occur, the investment will still have a positive though indirect 
impact in the ways systems are conceived and specified. The commit-

93 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


ment by the Japanese and DARPA programs suggests that the risk in 
not pursuing this new methodology will be greater than in pursuing 
it. 

Research is recolllllended in technology for logic progr8111Ding. 
The goal is a major advance in ability to realize logically powerful 
autonomous and human-interactive functions in future defense sys­
tems. The effort would build upon recent successful results of 
research in computer science and artificial intelligence, and would 
benefit from impending national and international efforts in the 
subject. 

5.8 Advanced Human Interfaces 

The importance of human interface and the need to support the 
software engineering cognitive processes have often been ignored in 
software environments. Poor human interfaces and poorly designed 
(thus unused or misused) techniques and tools have contributed to 
the inherent difficulty in understanding complex software and 
resulted in excessive logical errore and attendant coats in software 
development and maintenance. Research is beginning to address the 
cognitive process involved in how humane program. The use of 
graphic interfaces and displays during system development and for 
debugging/testing is progreuing rapidly. The use and misuse of 
stimuli, for example, color, in presenting visual displays is also 
currently being addressed. The use of natural, English-like 
language at the front end of the life cycle has been discussed 
widely and is covered under the Requirements and Specification Tech­
nology area. Of interest in this area is the progress being made in 
the area of Knowledge-Based Systems and logic progr8111Ding. These 
areas have considerable potential for developing the intelligent 
companion for the requirements writer, specifier, implementer, 
tester, and maintainer, as well as for training, thus having impact 
on all phases of the life cycle. 

Productivity of software developers and reliability of software 
systems are limited by the difficulty in understanding complex rela­
tionships in software. Text-based software representations in 
present software development systems place a heavy cognitive load on 
software developers and maintainers. 

Technological recommendations that are designed to alleviate 
these poor human interfaces include the following: 

1. Cognitive interface analysis; 
2. Graphic display, color, and verbal analysis/synthesis; 
3. Research on the use of natural (English-like) languages as 

input/ output media; 

94 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


4. Monitoring, detection, and provision of response to human 
errors; and 

5. Development of intelligent systems to serve as user co-worker. 

In the near term, it is neccessary to determine appropriate use 
of graphic displays, color, and in the mid-term, verbal input/out­
put. Graphic displays may be used to aid the software engineer in 
error-detection analysis, data flow, module interface, and for 
training purposes. Detection and monitoring of common human errors 
to allow the forgiving of these errors and an associated friendly 
environment would improve user adaptation to a new technique/tool 
and enable the user to experiment more with the same. Future system 
design and development should incorporate an intelligent co-worker 
to aid in decision making and improve the human/machine interface. 
Studies on the use of a natural, English-type language as a medium 
for input on the early phases of the life cycle to provide a natural 
interface to tools should begin in the mid-term. A far-term goal is 
to develop the intelligent co-worker, which accepts as input a well­
defined, English-type language and interacts with the user in that 
language. 

In order to implement and improve the human interface, a 
research effort should be initiated to address human response to 
visual stimuli (e.g., graphics and color) for assisting in system 
development and maintenance. Data should be collected on coJIIDon 
human errors in order to establish a users forgiving environment (an 
environment in which human errors can be easily and quickly recover­
ed from without loss of work). Software specification, design, 
debugging, and testing could be enhanced through the use of a system 
tracing interface allowing friendly, easy developer/tester interac­
tion and feedback. As new methodologies and interfaces are devel­
oped, they should be used in the development of computer-aided in­
struction materials for these techniques. As a long term goal, 
these techniques can be applied to aid the user and system devel­
oper in the entire system development, from the initial conception 
of the need to final product. The entire process may draw on such 
items as a natural-language interface, consistency/error checking, 
and logical analysis following a user model established from early 
data collection. 

There is an initial need for data collection to determine the 
physical (graphic, color, and verbal) media and cognitive factors 
that serve an important role in human interface design. This data 
collection and research is expected to cost approximately $2 mil­
lion. Research is needed on a natural-language interface and intel­
ligent co-worker for the user-system designer to aid in the transfer 
of user requirements into system specifications and the eventual 
product. Cost for this research is expected to be approximately $3 

95 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


million. Mid- and far-term research is needed in the area of 
cognitive patterns that users possess in order to predict possible 
user errors and allow for correction. Intelligent error prediction 
and correction coupled with the development of an intelligent co­
worker would cost on the order of $5 million. From the beginning, a 
benefit will be gained as techniques and tools can be designed that 
are easier, faster to learn, and allow easier recovery from errors. 
Ease of use plus error recovery capabilities provide user confidence 
in the technique/tool, which allows for faster and more enhanced 
technique/tool use. Understanding of complex software will be aided 
by automated, intelligent co-worker ability to detect and prevent 
user errors. Software maintenance costs will then decrease dramati­
cally as these intelligent workstations are networked together under 
the model presented for common distributed software support. 

The risk involved in the initial stages of human interface 
research is low in comparison to the gain from human interface en­
hancement. Risk over the long-term increases as the system evolves 
to an automated intelligent co-worker system in which some ability 
to determine needs, errors, and thought expectations is required. 

The importance of human factors has been overlooked in the field 
of computer science and is just beginning to receive ita due atten­
tion. Interface design to enhance underetanding and aeeiet in cog­
nitive proceeees will speed eyetem development and aid in ita cor­
rectne••· Technique• and toole, the deeign which it based on knowl­
edge of cognitive thought processee and other human factors, will be 
easier and faster to learn, reducing cost and increasing productiv­
ity. 

5.9 Upgrading Software Engineering and Mana~ement Education/Training 

The odds are that capable software personnel will remain in 
short supply for the foreseeable future. While the absolute supply 
may well increase, the continuing growth of computing in its broad 
aspects is likely to absorb the supply, no matter how rapidly it 
increases. In addition, there is a danger that new techniques and 
tools included in project plane will result in time delays and poor 
technique/tool utilization due to a lack of knowledge of the new 
technology. 

There are technological opportunities to improve training envi­
ronments for eoftware managers. Corporation• and, to some extent, 
academic institutions already use game-playing situations and simu­
lation-based training aids to develop executive managers. Such 
techniques can obviously be used, particularly in conjunction with 
Computer Aid Instruction (CAl) systems, to facilitate training of 
software acquisition managers. 

96 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Currently the advanced technology developed by industry and aca­
demia is not being exploited to its fullest by the u.s. Air Force, 
with the resultant loss of information and outdated technology used 
in U.S. Air Force systems development and maintenance. Likewise, 
u.s. Air Force needs are not being transmitted to software tools and 
technique developers, hence the lack of match of training systems to 
the needs and expectations of the U.S. Air Force. Current tech­
niques and technological advances in the area of cognitive human 
interface are not incorporated into training material to speed and 
improve technique/tool training. Curricula development, teaching 
techniques, and educational training path are not being adequately 
explored. 

Implementation of these recoDDDendations in the near term will 
require selection of several locations to enhance industry, govern­
ment and academia information exchange, with a mid-term goal of 
actual personnel exchange as an objective. Case studies should be 
collected to serve as training examples and improve academia and 
industry understanding of u.s Air Force needs. Metric development 
must begin to aid in estimating time for training on the use of new 
techniques/tools. Use of available media for training is needed as 
training programs should not be limited to written material but 
include videotape, cassette, and computer training. 

The mid-term training programs should include available current 
technology, including computer-aided instruction programs and other 
media available. These programs should be designed using the 
results from the advanced human interface analysis. Research at 
this point in advancing the technology involved in training is 
needed. Interactive CAI programs with an intelligent base to guide 
the trainee in learning new concepts is desired. Metering tools to 
evaluate trainee progress should also be incorporated. 

With regard to training software managers: While the general 
principles of automated approaches to training are understood, and 
while necessary physical equipment exists, it will take an R&D 
effort to assemble a complete system tailored to the software­
management context. It is therefore recommended that an R&D effort 
be undertaken that will eventuate in an automated simulation-based 
training complex for software acquisition managers. 

Such a facility can have broader application . By changing the 
knowledge base within the system, it can be used to train, for 
example, managers for other specialties or levels of management. 

Such a research and development effort need not start completely 
from zero. There are automated training aids -- for planning and 
budgeting, for example -- that might be exploited as part of an 

97 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


overall system. Moreover, knowledge-based components are already 
functioning in gaming environments, and such features could well be 
incorporated into the facility here suggested. 

Educational cost to implement these recommendations is expected 
to be approximately $20 million. There is an initial near-term cost 
in training the trainers to present each new technique/method and in 
material preparation. This effort could be expected to cost approx­
imately $5 million. The mid-term will require similar funding for 
trainee programs and will include development funding in order to 
begin the design of intelligent computer aided instruction programs 
and interactive training sessions. The mid-term cost could be 
expected to increase, therefore, to $7.5 million. The same amount 
will be needed in the far term as training materials are developed 
and reused. Continued research should improve and enhance the sys­
tems requiring extensions to the existing system. With such train­
ing a new method, technique, or tool may be efficently used, and 
rapidly incorporated into project development. Acceptance of the 
new technique or tool will occur much more rapidly with appropriate 
instruction and training. Development of intelligent computer-aided 
inetruction program• will reduce cost in training time and enhance 
ueers' understanding of the new technique/tool due to 'hands on' 
experience during training. 

The tool• developed for CAI designers will aid in deeign/produc­
tion time (hence reduce cost) and assist in incorporation of new 
features such as new human interface ideas and stimuli analysis. 
The tools will also allo~ trainee progress analysis and evaluation. 
Near-term risk involved in training is exceptionally low, as without 
such training a technique/tool may not be globally accepted or 
appropriately used by U.S. Air Force personnel. 

Techniques and tools designed to aid the manager, developer, 
designer, tester, trainer, or user of a system will be ineffective 
if not taught in such a way that the technique/tool use and impor­
tance is understood. It is imperative that advanced training tech­
niques be developed to allow self-paced instruction with intelligent 
feedback on progress and errors. · 

98 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


6.0 REFERENCES 

1 National Academy of Sciences. Operational Software Management 
and Development of U.S. Air Force Computer Systems. Committee on 
Operational Software Management and Development of u.s. Air Force 
Computer Systems. Washington, D.C.: 1977. 

2 The Armed Forces Communications and Electronics Association 
(AFCEA) Command and Control Systems Acquisition Study, Final 
Report. 1 September 1982. 

3 Martin, J., Application Development Without Programmers. 
Prentice Hall: Englewood Cliffs, N.J. 1982. 

4 Roberts, A. J. "Some Software Implications of c2 System 
Acquisition," Signal, 19-25. July 1982. 

5 Ackerlund, Col. E. T. ''Wrong Stuff," (Briefing presentation to 
the Summer Study.) 1983. 

6 Wolverton, R. '~anagement Impact of Programming Measurement 
Systems," (Briefing presentation to the Summer Study). 

7 "Software Engineering Automated Tools Index." Software Research 
Associates, P.O. Box 2432, San Francisco, CA 94215. (Loose-leaf 
catalog periodically updated.) 

8 Personal discussion with Col. Edward J. Simmons, Jr., formerly 
the software specialist with the IUS SPO. 

9 Thayer, R.H. "Rome Air Development Center R&D Program in Computer 
Language Controls and Software Engineering Techniques," 
RADCTR-74-80, Griffisa Air Force Base, Rome, New York. 1974. 

99 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


APPENDIX A: BRIEFERS to the COMMITTEE 

Edward T. Akerlund, AFSC/ALM, Air Force Systems Command 
Peter Belford, Computer Sciences Corporation (CSC) 
Wayne Bodle, U.S. Army Computer Systems Command, Ft. Belvior 
Israel Caro, AFWAL/AAAF, Wright-Patterson Air Force Base, Ohio 
Jack Clemons, IBM 
George Cox, Intel Corporation 
Alan Davis, GTE 
Jack Dennis, MIT Laboratory for Computer Science 
Samuel DiNitto, RADC, Griffiss Air Force Base, New York 
Dennis Doe, Boeing Aerospace Company 
Loraine Duvall, IITRI 
Don Dwiggins, LOGICON 
Carl Engelman, The MITRE Corporation 
Joseph Fox, Software A&E, Inc. 
Carolyn Gannon, General Research Corporation 
John Garman, NASA 
C. Cordell Green, Kestrel Institute 
James Hess, USA/DARCOM 
Kenneth Johansen, Boeing Computer Services Company 
Anthony Jordano, IBM Federal Systems Division 
Jan Komorowski, Harvard University, AIKEN Computation Laboratory 
Frank LaMonica, RADC/COEA, Griffiss Air Force Base, New York 
Robert Larson, Optimization Technology Incorporated (OTI) 
Mark Linton, University of California-Berkeley 
Owen Macomber, USN/NAVMAT/08Y 
James Miller, Computer * Thought 
Donald Mnichowicz, GTE AE R&D 
Leon Osterweil, University of Colorado 
Alton Patterson, SMALC 
Ben Prince, BCS Richland, Inc. 
Larry Putnam, Quantitative Software Management, Inc. 
Art Pyster, Private Consultant 
Fred Reagor, General Dynamics 
Debra Richardson, University of Massachusetts 
William Riddle, Software Design and Analysis 
Nick Roussopoulos, University of Maryland 
William Rzepka, RADC, Griffiss Air Force Base, New York 
Elliot Soloway, Yale University 
Michael Smith, University of Texas 
Edwin Stear, University of Washington 
Sam Steppel, Computer Sciences Corporation 
William Sweet, GTE Sylvania Systems Group 
Warren Teitelman, Xerox Pare 
Ken Thompson, Bell Telephone Laboratories 
Woodie Vandever, Higher Order Software, Inc. 
Richard Waters, MIT 

101 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Herbert Weber, Universitat Bremen, Federal Republic of Germany 
Gio Wiederhold, Stanford University 
Roy Williams, IBM 
Ray Wolverton, ITT Programming and Applied Technology 
Stephen Yau, Northwestern University 
Nicholas Zvegintzov, private consultant 

102 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


APPENDIX B: BIBLIOGRAPHY 

Technical Re orts 
Products Support Group, National 

Alford, M. Distributed Computing Design System, Final Report. TRW 
Electronics and Defense Sector. 21 June 1983. 

Alford, M. Distributed Computing Design System Description. 
Technical Report, DCDS Description. · TRW Defense and Space Systems Group. 
7 August 1981. 

Ball, J. Eugene, et al. "The Spice Project," CMU Computer Science 
Research Review. 1980/81. 

Bonus for Computer Engineers. Paper brief by AFSC/MP to AFSC/CV. 

Booch, Grady. Software Engineering with Ada. Menlo Park, CA: 
Benjamin Cummings Co., 1983. 

3 Calvery, A.L. and G.M. Lawrence. Software Standards System (S ) 
Characterization of SM-ALC ECS Support. SM-ALC/MME, McClellan Air 
Force Base, CA: Revised 3 May 1983 [Charts]. 

Committee on Human Factors. Research Needs for Human Factors. 
National Research Council. National Academy Press: Washington, D.c. 1983. 

"Compiler and Tool Set for ADA Design and Implementation," ADA 
Compiler Circle Reader Service. January 1983, pp. 90-94-.---

Computer Science Technical Report Services. University of Maryland, 
Technical Report 1161, February 1983. 

Defense Electronics (ISSN0194-7885). Volume 15, Number 1. 
E. W. Communications. Palo Alto, CA: January 1983. 

Defense Science Board. Task Force on Embedded Computer Resources 
(ECR) Acquisition and Management. Final Report. Washington, D.C. 1982. 

Department of the Air Force. Letter reply on "New Speciality Codes 
for Computer Resource Related Disciplines." No date. 

Department of the Air Force. "Management of Computer Resources in 
Systems." AFSC Supplement 1, dated 14 December 1982. 

103 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Department of Defense. Candidate R&D Thrusts for the Software 
Technology Initiative. May 1981. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Functional Task Area Strategy for Acguisition. 
30 March 1983. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Functional Task Area Strategy for Application 
Specific. 30 March 1983. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Functional Task Area Strategy for Human 
Engineering. 30 March 1983. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Functional Task Area Strategy for Human 
Resources. 30 March 1983. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Functional Task Area Strategy for Measurement. 
30 March 1983. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Functional Task Area Strategy for Project 
Management. 30 March 1983. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Functional Task Area Strategy for Support 
Systems. 30 March 1983. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Joint Task Force Report. 15 March 1983. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Implementation Approach. 15 March 1983. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Program Management Plan. 15 March 1983. 

Department of Defense. Software Technology for Adaptable, Reliable 
Systems (STARS) Program Strategy. 15 March 1983. 

Doane, Robert B. Lessons Learned Program. Letter Paper dated 
August 1982. 

Druffel, Larry. Software Engineering Notes. ACM SIGSOFT, Vol. 8, 
No. 2, April 1983. 

104 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Electronic Systems Division. AFSC Lessons Learned. Volume II. 
RCS: SYS-SDD. 

Financial Systems Redesign - Development Guide. 31 August 1982. 
Revised 15 December 1982. 

Fox, Joseph M. Software Acquisition. 15 July 1983. 

Giese, Clarence. GITPASE: An Interactive Planning Aid for Project 
Scheduling with Time-Resource Tradeoffs. Donovan Young & Ronald 
L. Rardin. 

Giese, Dr. Clarence. 
Software Systems. 

Personnel Management for Mission Critical 
Unpublished paper. July 13, 1983. 

Green, Cordell et al. Report on a Knowledge-Based Software 
Assistant. Kestrel Institu~e, dated 15 June 1983. 

Groves, Bill. "Getting VHSIC into Real World Systems". Defense 
Electronics, January 1983, pp. 102-111. 

Gypsy Verification Environment and Boyer/Moore Theorem Prover. 
Institute for Computing Science, The University of Texas at 
Austin. 

Hibbard, Peter. Document Presentation Facilities for Spice. 
Carnegie-Mellon University, Computer Science Departments, 1983. 

JLC Position on the Software Initiative. (A Combined Position of 
the JPCG-CRM and the JDL). 

Johansen, Ken. The Boeing Embedded Software Standard. July 13, 
1983. 

Lax, Peter D. Large Scale Computing in Science and Engineering, 
National Science Foundation: Washington, D.C. 26 December 1982. 

Lessons Learned Notebook. Computer Hardware/Software Acquisition. 
1 April 1980. 

Martin, Edith W. Stars (Software Initiative Program Implementation. 
Letter dated 31 March 1983. 

Miller, Edward F., Jr. 
Language for DCDS. 
May 1983. 

Requirements for the Test Specification 
Technical Report. San Francisco, Cal.: 20 

Moore, Wayne Robert, et al. Concepts, The Journal of Defense 
Systems Acquisition Management, Autumn 1982. Volume 5, Number 4. 

105 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Patterson, Alton E. Air Force Integration Support Facilities: 
Their Total Utility. Presented at "NAECON 1980, 11 Sacramento 
Air Logistics Center, McClellan Air Force Base, Cal. 

Redwine, s. T. Jr., E. D. Siegel, and G. R., Berglaaa. Candidate 
R & D Thrusts for the Software Technology Initiative. 
Department of Defense: Washington, D.C. May 1981. MTIS/DTIC 
Al02180. 

Richardson, D. J. Symbolic Evaluation and ApPlications to Testing• 
Computer and Information Science, University of Maaaachuaetta at 
Amherst. 

Roussopoulos, N. Software Engineering Environment Support. 
Department of Computer Science, University of Maryland, College 
Park, MD 20742. 

Siegel, E. D. Summary of Responses to the Software Technology 
Initiative Queationaire. The MITRE Corporation: May 1982. MTR 
- 82W00085. 

SRO PSL/PSA Guide. PSL 17 Sept 1982, PSA 01 July 1982. 

Stevena, M. Managing the Total Life Cycle. Doc 0012C Disk 0086A. 
July 14, 1983. 

TRW. Distributed Computing Design System. Final Report, 21 June 
1983. 

TRW. Distributed Computing Design System. Technical Report, DCDS 
Description. 7 August 1981. 

Ware, W. H. Avionics Software: Where are We? The Rand Corporation: 
September 1982. 

Ware, W. H. Perspectives on Life-Cycle Support of Software. The 
Rand Corporation: 1 July 1983. 

Ware, W. H., and R. L. Patrick. Perspectives on Oversight Management 
of Software Development Projects (N-2027-AF). The Rand 
Corporation: July 1983. 

Wiederhold, G. The Database Design Process. Stanford University. 

Wiederhold, G. Knowledge-Baaed Management Systems. A Method 
for the Design of Multi-objective Database. July 1982. 

Williams, R. H. Software Cost Parametrics: IBM/FSD User 
Requirements. 

106 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Williams, R. H. 
Parametric&. 

Owego Software Cost Engineering Overview 
30 September 1982. 

Yeh, R. T. et al. A Report on DoD's Software Technology 
Initiative. 

Computer Science Technical Report Series, University of 
Maryland. 

Zelkowitz, M. V.; R. Yeh; R. G. Hamlet; J.D. Gannon; V. R. Basili. 
The Software Industry: A State of the Art Survey. University 
of Maryland • 

Zvegintzov, N. Maintenance Technology. 1983. 

107 

' 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


APPENDIX C: OUTBRIEFING OF THE 1983 SUMMER STUDY 

The following briefing elides were used by the Committee Chairman 
to present the results of this study to General Thomas Marsh, 
Commander, Air Force Systems Command, and other dignitaries at the 
outbriefing on 29 July 1983 held at the National Academy of Sciences' 
Woods Hole Study Center, Woods Hole, Massachusetts. 

109 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


..... ..... 
0 

TASK STATEPEHT 

I PROVIDE TECHNOLOGY BASE AND MANAG~NT RECOMMENDATIONS 

TO THE AIR FORCE WITH REGARD TO: 

SOFTWARE LIFE CYCLE COST REDUCTION 

SOFTWARE QUAL I TV I PIPROVEI£NT 

I IDENTIFY A NEAR TERM SOFTWARE ENGINEERING ENV I ROMENT 

CONSISTING OF OFF-THE-SHELF TOOLS AND TECHNIQUES WHitH 

MAY. BE IMPW£NTED6 AS IS6 OR WITH "INOR fiJDIFICATION 

I PROYIDt Tl~ PHASED RECOMMENDATIONS FOR MAJOR MODIFICATION6 

DEVELOPMENT AND INTEGRATION Uf IDENTIFIED ELEI£NTS LEADING 

TO A LONGER TERM COf1PREHENS lYE ENV I ROfiENT 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


~ 
~ 
~ 

SOFTWARE ENGINEERING ENVIRONMENT 

INCLUDES 

I AUTOMATED TOOLS FOR SPECIFICATION~ DESIGN~ DEVELOA£NT1 TEST AND 
VALIDATION~ OPERATION AND MAINTENANCE 

I SPECIFICATION~ DESIGN AND IMPLEMENTAfiON LANGUAGES 

I PREDICTIVE MODELS FOR COST1 SCHEDULE~ RELIABILITY 

I STANDARDS FOR DOCUMENTATION AND QUALITY CONTROL 

I MANAGEMENT TOOLS AND PROCEDURES DIRECTED TO/FROM THE SOFTWARE 
ENGINEERING ENVIRONMENT STRUCTURE 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


i:: ...., 

ISSUE: 

NEAR TERM ENVIROfiDT 

(2-lt YEARS) 

I ACHIEVABLE GAl NS IN PRODUCT lVI TV AND QUAL I TV FROM 

OFF THE SHELF TOOLS AND TECHNIQUES ARE NOT INSURED 

RECOfiENDAT IONS: I I ENGINEER I SEVERAL 1ST GENERAl I ON ENVI ROfiDTS WHICH 

UTILIZE COWATIBLE6 PROVEN TECHNIQUES AND TOOLS 

I.NITIATE TRAININ66 DISTRIBUTION AND MAINTENANCE 

ENFORCE 4S THE MINIMUM FUNCTIONAl STANDARD 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


.... .... 
~ 

ISSUE: 

MID TERM ENVIRONMENT 
C'--6 YEARS) 

I SUBSTANTIAL INCREASES IN PRODUCTIVITY AND QUALITY 
DEPEND ON 2ND GENERATION~ COMPREHENSIVE AND INTEGRATED 
ENVIRONMENT($) BASED ON THE CURRENT LIFE CYCLE MODEL 

RECOMMENDATIONS: I CONCENTRATE ON REQUIREMENTS AND SPECIFICATION PHASES 
REQUIREMENTS EXPRESSION LANGUAGES 
REQUIREMENTS ANALYSIS AND VALIDATION TOOLS 

I 

I 

I 

INCREASE COMPUTER AIDED TEST DESIGN AND ANALYSIS 
INTEGRATE INTELLIGENT DBMS INTO ENVIRONMENTCS) 
INTRODUCE DISTRIBUTED SOFTWARE ENGINEERING WORK 
STATION CONCEPT 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315


.... .... • 

ISSUE: 

FAR TERM ENVIRONMENT 
(6-15 YEARS) 

1 INCREASED COMPLEX I TV OF AIR FORCE Ml SS I ON (PERFORMANCE~ 
RELI AB I L I TV~ FLEX I B I L I TV~ DEPLOYMENT) WILL RENDER NEAR/MID 
TEIUt ENVIRONMENTS INADEQUATE 

1 ADVANCED TECH BASE REQUIRED TO ACHIEVE AN ORDER OF 
MAGNITUDE I MPROYEMENT OVER CURRENT PRODUCT IV I TV AND 
QUALITY 

RECOMMENDATION: 1 INCREASE AUTOMATION OF THE SPECIFICATION~DESIGN~ 
I~PLEMENTATION~ TESTING AHD VALIDATION PROCESS THROUGH 
INTEGRATION OF kNOWLEDGE BASED EXPERT SYSTEMS AND AI 
TECHNIQUES 

1 EXPLORE ALTERNATE DEVELOPMENT LIFE CYCLE MODELS 

Copyright © National Academy of Sciences. All rights reserved.

Methods for Improving Software Quality and Life Cycle Cost
http://www.nap.edu/catalog.php?record_id=19315

http://www.nap.edu/catalog.php?record_id=19315

	Front Matter
	Introduction
	Summary of Recommendations
	Improvement of Current Management Practices
	Software Engineering Tools
	Advanced Technology Opportunities
	References
	Appendices
	Appendix A: Briefers to the Committee
	Appendix B: Bibliography
	Appendix C: Prioritized Recommendations and Outbriefing

